Accretion rates and accretion tracers of Herbig AeBe stars

Mendigutía et al. 2011 A&A 535,A99

Magnetospheric accretion

- For T Tauri stars: accepted paradigm
- Inner disk is truncated

- Matter is accelerated through magnetic field lines
- Hot accretion shocks on the stellar surface
- Explains continuum excess, line veiling
- Modeling yields accretion rate estimates that correlate with spectroscopic features → spectral lines can be used as accretion rate tracers

Magnetospheric accretion

- What about Herbig Ae/Be stars?
- Herbig Ae/Be stars are the massive (I I0 M_{Sun}) counterparts of T Tauri stars
- How do they accrete? What's the difference?
- MS stars earlier than about A6 (2 M_{Sun}) have no convective zone \rightarrow no dynamo \rightarrow no magnetic field
- In young stars: convective zone may appear at earlier spectral types OR slowly decaying fossil field → may have weak magnetic fields
- MA may be expected in the intermediate mass regime

Magnetic field measurements

- Magnetic field is detected in some Herbig Ae stars (Wade et al. 2007, Hubrig et al. 2009): typically < 0.5 kG (cf. several kG for T Tauris)
- Method: measure the circular polarization of line emission due to the line-of sight component of the star's magnetic field
- Measured quantity: line intensity-weighted average over the stellar disk of the line-of-sight component, called "longitudinal field" or "effective field"

$$\frac{V}{I} = -g_{\text{eff}} C_z \lambda^2 \frac{1}{I} \frac{\mathrm{d}I}{\mathrm{d}\lambda} \langle B_z \rangle$$

Magnetic field measurements

Wade et al. (2007)

Hints for MA in HAe's

- Spectropolarimetry of the Halpha line points to MA (Vink et al. 2002, 2003, Mottram et al. 2007):
 - HBe stars: Halpha is depolarized compared to the continuum
 - HAe and T Tauri stars: Halpha is polarized compared to the continuum

MWC361 H gamma bin=0.05 5 θ (degrees) 95 100 1 Polarization (%) 0.7 0.8 0.9 Stokes I (10⁶) 0.9 0.8 2.0 4300 4320 4340 4360 4380 Wavelength (Å) MWC480 H gamma bin=0.1 8 θ (degrees) 40 60 80 3 Polarization (%) 0.4 0.2 0.2 Provin Stokes I (10⁶) 5 0.1 0.15 0.05

> 4300 4320 4340 4360 4380 Wavelength (Å)

Mottram et al. (2007)

Hints for MA in HAe's

- Accretion goes through high latitude funnels (Grady et al. 2010, Brittain et al. 2009)
- High-velocity redshifted absorption point to infalling material at close to free-fall velocities (Natta et al. 2000, Mora et al. 2002, 2004)

Grady et al. (2010)

Intermediate mass T Tau's

- IMTTS: intermediate mass T Tauri star
- ETTS: early-type T Tauri star
- GTTS: G-type T Tauri star
- $I 5 M_{Sun}$ mass range (same as Herbig Ae stars, but these are early K to late F)
- First modeling of MA for IMTTS: Calvet et al. 2004
- Result: there is a correlation between accretion rate and Brγ luminosity
- Problem with doing the same study for HAe stars: stellar photosphere and accretion shock both have the same temperature (~ 8000 K) → it's difficult to separate them, measure excess emission, and measure its luminosity

Aim of this paper

- Apply shock modeling within the context of MA
- Reproduce the strength of the Balmer excess for a sample of HAeBe stars
- Compare the accretion rates derived above with the strength of the H α and [OI]6300 emission lines and the Br γ luminosity
- Estimate accretion rate variability from multi-epoch data

Sample and observations

- 38 stars: 28 HAeBe stars, 10 IMTTs (F-G type)
- All of them have IR excess (dusty disks)
- All of them show $H\alpha$ emission (active accretion)
- Multi-epoch Hα and [OI]6300 spectra (mid-resolution, R~5000), multi-epoch UBV photometry, spectra and photometry taken on the same nights
- All of them show $H\alpha$ emission (active accretion)
- Subtract the stellar photosphere, deredden
- Measured quantities: mean Hα luminosity, mean Hα 10% width, mean [OI]6300 luminosity
- Non-simultaneous Brγ luminosities are taken from the literature

Sample and observations

Star	<i>M</i> _*	L_*	T_*	<i>R</i> _*	g	Age	v sin i	d	$\left< L({\rm H}\alpha) \right>$	$\langle \overline{W_{10}(\mathrm{H}\alpha)}\rangle$	$\langle L([OI]6300) \rangle$	$\langle E(B-V) \rangle$	$L(Br\gamma)$
	(M_{\odot})	(L_{\odot})	(K)	(R_{\odot})	$[\rm cm \ s^{-2}]$	(Myr)	$({\rm km \ s^{-1}})$	(pc)	$[L_{\odot}]$	$({\rm km}~{\rm s}^{-1})$	$[L_{\odot}]$	(mag)	$[L_{\odot}]$
HD 31648	2.0	21.9	8250	2.3	4.0	6.7	102	146	-1.42	595		0.02	(?)
HD 34282	$<2.1^{A}$	5.13 ^A	9550 ^A	0.8	4.9	$>7.8^{A}$	129	164 ^A	-2.82	487		0.19	-4.20^{1}
HD 34700	2.4^{B}	20.0^{B}	6000^{B}	4.2	3.6	3.4^{B}	46	336 ^H	-2.29	334		0.01	(?)
HD 58647	6.0	911	10500	9.1	3.3	0.4	118	543	-0.13	619	-2.49	0.13	-2.08^{2}
HD 141569	2.2^{A}	22.9 ^A	9550 ^A	1.8	4.3	6.7 ^A	258	99 ^A	-2.01	646	-3.71	0.09	$-3.99^{1,2}$
HD 142666	2.0^{A}	17.0 ^A	7590 ^A	2.4	4.0	5.1^{A}	72	145 ^A	-2.33	483	-4.75	0.26	$-3.53^{1,3}$
HD 144432	2.0^{A}	14.8 ^A	7410 ^A	2.3	4.0	5.3^{A}	85	145 ^A	-1.87	421	-4.93	0.06	$-3.29^{1,3}$
HD 150193	2.2	36.1	8970	2.5	4.0	5.0	100^{C}	203	-1.15	458		0.45	-2.64^{1}
HD 163296	2.2	34.5	9250	2.3	4.1	5.0	133	130	-1.17	726	-4.37	0.03	$-2.77^{1,2,3}$
HD 179218	2.6	63.1	9500	2.9	3.9	3.3	72^{D}	201	-1.16	464	-3.86	0.08	-2.74^{3}
HD 190073	5.1	471	9500	8.0	3.4	0.6	20^E	767	0.06	378	-2.49	0.13	(?)
AS 442	3.5	207	11 000	4.0	3.8	1.5	(?)	826	-0.15	646	-2.42	0.73	(?)
VX Cas	2.3	30.8	10 000	1.9	4.3	6.4	179	619	-1.43	672	-3.48	0.37	(?)
BH Cep	1.7 ^A	8.91 ^A	6460 ^A	2.4	3.9	8.2 ^A	98	450 ^A	-2.34	705	-4.25	0.31	(?)
BO Cep	1.5^{A}	6.61 ^A	6610 ^A	2.0	4.0	11.2^{A}	(?)	400^{A}	-2.51	685	-3.97	0.13	(?)
SV Cep	2.4	37.5	10250	1.9	4.3	5.2	206	596	-1.33	731	-3.20	0.39	(?)
V1686 Cyg	$>3.5^{A}$	257 ^A	6170 ^A	14	2.7	$< 0.2^{A}$	(?)	980 ^A	-0.27	457	-2.80	0.63	-1.77^{3}
R Mon	$>5.1^{A}$	2690 ^A	12020^{A}	12	3.0	$< 0.01^{A}$	(?)	800 ^A	0.34	832	-1.04	0.70	(?)
VY Mon	$>5.1^{A}$	15800 ^A	12020^{A}	29	2.5	$< 0.01^{A}$	(?)	800 ^A	-0.65	719	-0.46	1.79	(?)
51 Oph	4.2	312	10250	5.6	3.6	0.7	256	142	-1.23	522		0.03	$-2.68^{1,2}$
KK Oph	2.2^{A}	25.7 ^A	7590 ^A	2.9	3.8	3.9 ^A	177	160 ^A	-2.28	593	-3.53	0.36	-3.53^{1}
T Ori	2.4	50.2	9750	2.5	4.0	4.0	175	472	-0.88	680	-2.95	0.54	(?)
BF Ori	2.6	61.6	8970	3.3	3.8	3.2	37	603	-1.24	731	-3.49	0.15	-2.92^{3}
CO Ori	>3.6 ^A	100 ^A	6310 ^A	8.4	3.1	$< 0.1^{A}$	65	450 ^A	-0.99	553	-2.77	0.70	(?)
HK Ori	3.0^{A}	77.6 ^A	8510 ^A	4.1	3.7	1.0^{A}	(?)	460 ^A	-1.57	573	-2.69	0.37	$-2.92^{1,3}$
NV Ori	2.2^{F}	21.2^{F}	6750^{F}	3.4	3.7	4.4^{F}	81	450 ^I	-1.97	583	-4.81	0.08	(?)
RY Ori	2.5^{A}	28.2^{A}	6310 ^A	4.5	3.5	1.8^{A}	66	460	-1.7	598	-3.74	0.49	(?)
UX Ori	2.3	36.8	8460	2.8	3.9	4.5	215	517	-1.36	677	-3.58	0.17	$-2.80^{1,3}$
V346 Ori	2.5	61.4	9750	2.8	4.0	3.5	(?)	586	-1.87	889		0.29	-3.21^{3}
V350 Ori	2.2	29.3	8970	2.2	4.1	5.5	(?)	735	-1.39	724	-3.26	0.47	-2.62^{3}
XY Per	2.8	85.6	9750	3.3	3.9	2.5	217	347	-1.12	728	-3.29	0.46	-2.97^{3}
VV Ser	4.0	336	13 800	3.2	4.0	1.2	229	614	-0.06	691	-1.82	1.04	$-1.34^{1,3}$

Description of the model

- Accreting HAeBe stars show excess continuum compared to MS stars with similar spectral type in the Balmer discontinuity region.
- We model this Balmer excess to provide estimate of the accretion rate
- Total flux per wavelength unit: $F_{\lambda} = f F_{\lambda}^{col} + (1 f) F_{\lambda}^{phot}$

f: filling factor (portion of the stellar surface covered by accretion columns)

F^{phot}: undisturbed stellar photosphere (Kurucz model with appropriate T* and log g)

 F^{col} : flux from the column (BB with T_{col} : $F_{\text{col}} = \sigma T_{\text{col}}^4$)

Description of the model

• Total luminosity of the column:

$$L^{\text{col}} = F^{\text{col}}A = \left(\mathcal{F} + F^{\text{phot}}\right) \times A = \xi L_{\text{acc}} + F^{\text{phot}}A$$

F: inward flux of energy carried by the accretion column $F^{phot} \ge A$: outward stellar radiation below the accretion shock

- $A = f4\pi R^{*2}$
- $L_{\rm acc} = GM*\dot{M}_{\rm acc}/R*$

 $\xi = I - R_*/R_i$

 R_i is the disk truncation radius

• Once F and R_i are fixed, T_{col} and f can be calculated for a given set of stellar and accretion parameters

Description of the model

- How to fix R_i ?
- It should be less than the corotation radius: $R_{cor} = \left(\frac{GM_*R_*^2}{v_*^2}\right)^{1/3}$ v_* is the stellar rotational velocity (from v sin i)
- Once T_{col} and f are determined, the total flux as a function of wavelength can be calculated

$$M_* = 2.5 M_{Sun}$$

- $R_* = 2.6 R_{Sum}$
- *T** = 9000 K
- $F = 10^{12} \text{ erg/cm}^2/\text{s}$
- $T_{col} = 12470 \text{ K}$

 $R_{\rm i} = 2.5 R_{*}$

Balmer excess

- For a given set of stellar and accreting parameters, the excess in the Balmer discontinuity is defined as: $\Delta D_{\rm B} = (U - B)_{\rm phot} - (U - B)_{\rm total}$
- Calculated from the synthetic spectra by taking into account the filter profiles

Balmer excess

- Red: *T** = 6500 K
- Green: *T** = 9000 K
- Blue: *T** = 12 500 K
- Solid lines: $\log g = 4.0$
- Dashed lines: log g = 3.0

Observed mean U-B colors

 $\langle U-B \rangle_{dered}$ is the dereddened mean color from the observations in Oudmaijer et al. (2001)

 $\langle U-B \rangle_0$ is the intrinsic color from Kenyon & Hartmann (1995)

Results

Star	$\langle \Delta D_{\rm B} \rangle$	$\log \dot{M}_{\rm acc}$	$\log L_{\rm acc}$	R_i	$T_{\rm col}$	f
	(mag)	$[M_{\odot} \text{ yr}^{-1}]$	$[L_{\odot}]$	(R_*)	(K)	(%)
HD 31648	0.05	<-7.23	< 0.20	2.5	12215	1.1
HD 34282	0.06	<-8.30	<-0.40	2.5	12 695	2.2
HD 34700	0.00	<-8.30	<-1.05	2.5	11730	0.02
HD 58647	0.18	-4.84 ± 0.22	2.47 ± 0.23	2.1	13140	12
HD 141569	0.09	-6.89 ± 0.40	0.70 ± 0.40	1.5	12695	3.6
HD 142666	0.18	-6.73 ± 0.26	0.69 ± 0.27	2.5	12 030	3.2
HD 144432	0.06	<-7.22	< 0.21	2.5	11990	1.1
HD 150193	0.29	-6.12 ± 0.14	1.33 ± 0.15	2.5	12 460	13
HD 163296	0.02	<-7.52	<-0.03	2.2	12570	0.61
HD 179218	0.02	<-7.30	< 0.14	2.5	12670	0.60
HD 190073	0.22	-5.00 ± 0.25	2.29 ± 0.26	2.5	12670	12
AS 442	0.48	-5.08 ± 0.11	2.37 ± 0.12	2.5	13 405	56
VX Cas	0.22	-6.44 ± 0.22	1.16 ± 0.23	2.0	12895	13
BH Cep	0.01	<-8.30	<-0.94	2.4	11 800	0.07
BO Cep	0.21	-6.93 ± 0.28	0.45 ± 0.29	2.5	11 825	2.8
SV Cep	0.24	-6.30 ± 0.20	1.30 ± 0.21	1.8	13 015	14
V1686 Cyg	0.12	-5.23 ± 0.41	1.66 ± 0.41	2.5	11755	0.87
R Mon	0.76	(?)	(?)			
VY Mon	1.22	(?)	(?)			

Correlations

- Missing parameters: for some stars, the Balmer excess is so high that we would need accretion rates on the order of $10^{-2} - 10^{-1} M_{Sun}/yr$ with $F \gg 10^{12} \text{ erg/cm}^2/s$ and f = 1
- Median accretion rate: $2 \times 10^{-7} M_{Sun}/yr$
- $\dot{M}_{acc} \sim M^{*5}$, $L_{acc} \sim L^{*1.2}$ ($\dot{M}_{acc} \sim M^{*2}$, $L_{acc} \sim L^{*1.5}$ for lower mass stars) -6 og M_{acc} [M_{sun} yr -8 -10 -12 -2 -1.5 -0.5 0 0.5 -2 2 $Log M_* [M_{sun}]$ Log L_{*} [L_{sun}]

Macc vs. M*

- $\dot{M}_{acc} \sim M^{*5}$
- Steep slope is related to faster evolution of higher mass stars:
- Less massive stars tend to be older → accrete less
- More massive stars tend to be younger
 - \rightarrow accrete more

Comparison to prev. results

- Empirical calibration between accretion luminosity and Br γ luminosity for IMTTs (Calvet et al. 2004)
- Garcia Lopez et al. (2006) used this for Herbig stars to derive accretion rates
- Good linear correlation between Garcia Lopez and this work

Accretion tracers

Accretion tracers

- Decrease of slope for the HAeBe regime
- Big scatter in the Brγ data (can probably be decreased if we use simultaneous data)

Accretion vs Ha 10% width

- Width of the Hα line at 10% of the peak intensity: widely used accretion tracer for low-mass stars
- Correlation breaks for HAeBe stars!
- Reason: typically high rotation rates of massive stars influence the width of the Hα line

Rotation vs Ha 10% width

- Indeed, Hα 10% width correlates with v sin i
- Influence of stellar rotation can be qualitatively modeled from MA (using the model of Muzerolle et al. 2001)

Variability of accretion

- Photometry and spectra used in this work were taken during four campaigns on different months
- Multi-epoch Balmer excesses were derived from individual
 U B and B V data
- Multi-epoch H α and [OI]6300 luminosities were derived
- Most stars show constant Balmer excess (within the uncertainties); variation < 0.2 mag \rightarrow factor of < 5 in \dot{M}_{acc}
- Two most extreme cases:
 V1686 Cyg: Balmer excess changed from 0.04 mag to 0.18 mag → implies an accretion rate change of a factor < 5 WW Vul: Balmer excess changed from 0.14 mag to 0.04 mag → implies a accretion rate change of a factor < 4

Limitations

- Few data points (typically 3 per star, 7 at most)
- Cases where the Balmer excess changes, but the corresponding Hα and [OI]6300 luminosities do not vary accordingly, as expected
- Maybe there is a time lag?
- Need more data
- VLT/X-Shooter: multi-epoch, high resolution spectra covering simultaneously the UV to near-IR wavelength range

Origin of empirical cal.?

- How does the accretion influence line formation?
- The H and Br lines come from the accretion column
- Influence of winds is becoming more important with increasing stellar mass \rightarrow explains the decrease in the slope of the H α calibration when compared to lower mass stars
- Origin of the [OI]6300 line?
 - accretion-powered outflow
 - UV illumination of the disk surface (UV excess ↔ accretion shock)

Origin of empirical cal.?

- Lines are related to typical accretion rates, but variability decoupled from Balmer excess → origin and strength of lines are influenced by diff. processes apart from accretion!
- Important caveat: maybe L_{acc} correlate with L_{line} only because both L_{acc} and L_{line} correlate with L*!

Summary

- We applied shock modeling within the context of MA to 38 HAeBe stars, reproduced the strength of the Balmer excess, and determined mass accretion rates (typical value: 2 x 10⁻⁷ M_{Sun}/yr)
- Steep dependence on stellar mass (most massive HAeBes are the youngest, and strongest accretors)
- We obtained empirical expressions to relate accretion and the Hα, [OI]6300, and Brγ luminosities. Trends are similar to lower-mass stars, but slopes are shallower
- Hα line width at 10% of the peak intensity cannot be used to estimate accretion rate due to rotational broadening

Summary

- Accretion rate changes from the Balmer excess are typically < 0.5 dex, and is usually uncorrelated with the variability of the Hα and [OI]6300 lines
- Origin of empirical calibration between accretion and line luminosities may be driven by a common dependence on stellar luminosity???
- Shock models fail to reproduce the Balmer excess of the four hottest stars in our sample → magnetically driven accretion in HAe stars, but some other kind of accretion in HBe stars
- This is not a test of MA! MA seems OK, but the observations could be explained by some different scenario

Papers to present on Nov 19

- Gullbring et al. 2000: The structure and emission of the accretion shock in T Tauri stars. II The ultravioletcontinuum emission (ApJ 544, 927–932)
- Mendigutía et al. 2012: Accretion-related properties of Herbig Ae/Be stars. Comparison with T Tauris (A&A 543, A59)
- Muzerolle et al. 1998: A Br gamma probe of disk accretion in T Tauri stars and embedded young stellar objects (AJ 116, 2965-2974)
- Natta et al. 2004: Accretion in brown dwarfs: An infrared view (A&A 424, 603–612)