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Circumstellar disks

• Disks accompany the birth of all low-mass 
stars

• Present for millions of years

• Their material builds up the star & planets

• Emit at IR and mm wavelengths → measure 
mass, size, structure, composition





Circumstellar disks

Dullemond & Monnier 2010



First statistical studies

Strom et al. 1989



Evidence for flatness

O’Dell & Wen (1994)



Evidence for flatness

McCaughrean & 
O’Dell (1995)



New discoveries

• Infrared Space Observatory (ISO)

• Spitzer Space Telescope

• Herschel Space Observatory

• Ground-based mm interferometers: SMA, 
PdBI, CARMA, ALMA



Info on disks

• Regular reviews: Protostars & Planets 
conference series

• ARA&A papers:

- cosmic silicates (Henning 2010)

- inner disks (Dullemond & Monnier 2010)

- debris disks (Wyatt 2008)

- dynamical processes (Armitage 2011)
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Classification of  YSOs
• IR-based classification: 

Lada & Wilking (1984)

• Class I-II-III

• Spectral slope 
between 2 and 25 μm

• Flat spectrum; Class 0

• CTTS / WTTS 
EW(Hα) ~ 10 Å



Classification of  YSOs

Problems:

• SED is ambiguous: objects with different 
amount/distribution of material can have similar 
SEDs

• Example: edge-on disks are highly extincted → 
seem less evolved



Disk formation
Theoretical calculations:  Terebey, Shu & Cassen (1984)

• Uniformly rotating isothermal sphere

• Equilibrium is unstable to collapse

• Disks grow rapidly with time: R(t) ~ Ω2t3

• Various masses and sizes

• Role of magnetic field: unclear, but doesn’t support 
the cloud from collapsing

• Disks form within 104 years



Disk formation
Observations

• Disks are visible due to polar
cavity in the envelope

• Inward motions in cores?
Observed.

• Direct detection of gas flow
onto a disk? Not observed yet.

• Imaging embedded disks: long wavelength to see 
through the envelope; >arcsec resolution to match 
disk sizes → mm interferometers



Rapid transport in disks
• Jørgensen et al. (2009): 1.1mm continuum survey 

of 20 embedded YSOs

• Disk flux is typically 4x higher in Class 0 than in 
Class I.

• Class 0 sources are also hotter.

• Masses in both Class 0 and Class I are the same 
~ 0.02 − 0.1 M☉ ; median disk mass = 0.04 M☉.

• Envelope mass declines by x10 from Class 0 to 
Class I

• Material is rapidly transported through the disk



Rapid transport in disks
• Cause of rapid transport: disk instability

• Gravitational instability during early formation

• Sporadic bursts of high accretion (FU Orionis)

• Prevents the disk from growing too much in mass 

• Another evidence for episodic accretion: 
envelope infall rates are > 10x higher than disk 
accretion rates in Class I YSOs → mass builds up 
in the disks until it bursts

• Episodic accretion: possible solution for the 
luminosity problem



From Class I to Class II
• Class 0 + Class I phase lasts about 0.5 Myr

• By the end of Class I, envelope disperses

• Disk mass is typically 0.01 Mstar

• Star formation process is effectively over

• Disk: protoplanetary, not protostellar

• Disk material:

- accretes onto the star

- disperses due to photoevaportion

- coagulates into larger bodies



Properties of Class II disks

• Extinction is low → stellar properties
can be observed in the optical/near-IR

• Minimum mass solar nebula: lowest
mass primordial disk that could have formed the 
solar system (computed by scaling planetary 
composition to cosmic abundances)

• MMSN = 0.01 − 0.07 M☉

• Σ ~ r−3/2



Disk mass: basics
• Best determined from (sub)millimeter 

observations

• Dust continuum emission is optically thin for 
most of the disk

• Optical depth:

    where Σ is the projected surface density
    β is related to dust size and composition

• Dust continuum emission is optically thin for 
most of the disk



• In circumstellar disks: β ~ 1

• κ(1 mm) = 0.03 cm2g−1

• τ(1 mm) = 1 where Σ = 30 g cm−2

• Corresponds to 10 AU in the MMSN

• Corresponds to 0.07″ in Taurus

• Disks are larger than this → most of the resolved 
emission is optically thin

• Disk mass: 

Optically thin emission



• Large mm surveys:
Beckwith et al. (1990) Taurus-Auriga
André & Montmerle (1994) Ophiuchus

• Andrews & Williams (2005, 2007)

• Median disk mass for Class I YSOs: 5 MJup

• Median Mdisk / Mstar = 0.009

• Mass distribution in log mass bins: flat until 50 MJup

Disk mass distribution



Disk mass distribution



Uncertainties in mass
• Gas-to-dust ratio is assumed to be interstellar (100) 
→ overestimation

• Hidden mass in large grains → underestimation

• Rule of thumb: observations at λ is sensitive to 
grains with sizes of < 3λ

• Indications for severe underestimation:

• measured disk masses are lower than what is 
expected by integrating the accretion rate over 
the protostellar age

• not enough massive disks to match the 
statistics on the incidence of exoplanets



• Difficult to measure: outer parts are cold and faint

• Disk silhouettes in Orion:
radii between 50 and 194 au
median radius of 75 au

• Millimeter disk images: requires interferometry

• First large interferometric survey: Dutrey et al. (1996):
typical disk sizes in
Taurus: 1 − 2″
(r = 75 − 150 au)

Disk radius



• Problem: dust sizes ≠ gas sizes (size from CO lines 
larger than from dust continuum)

Dust size vs. gas size

AB Aur   Pietu et al. (2005)



Dust size vs. gas size
• Possible solutions:

• Change in the gas-to-dust ratio or dust opacity at a 
certain radius

• Exponentially tapered density profile:

• Apparent size discrepancy! mm continuum is 
optically thin, CO line emission is optically thick → 
can be detected further out

• Rc: characteristic radius where the density profile 
begins to steepen significantly from a power law, 
typically Rc = 30 − 200 au



Parameter correlations

• Between disk size 
and disk mass: 

• Between disk size 
and stellar 
properties: no 
correlation

Andrews et al. (2009)



Disk structure − Σ
• Resolved mm image of the disk → total mass + radial 

mass distribution

• Usual parametrization: power law: Σ ~ R−p

• p = 0 ... 1

• Exponentially tapered edge

• Approximates Σ ~ R−γ for R << Rc

• γ = −0.8 ... 0.8 (mean 0.1)

• Σ distribution is quite flat (cf. p=1.5 for MMSN)



Σ distribution
• p exponent for MMSN is very uncertain

• Let’s compare directly the absolute value of Σ at 
different radial
distances

• Σ = 10 ... 100 g cm−2

at 20 au

• Good match

• Toomre parameter:

• Class II are typically
gravitationally stable



Disk structure − H
• H − vertical scale height

• First idea of a flared disk:
Kenyon & Hartmann (1987)

• H must increase with R

• Density:

• Scale height is
power-law:
H ~ Rh, with
h = 1.3 ... 1.5



Disk structure − v

• In Class II:   Mdisk ≪ Mstar

• Expectation: Keplerian velocity field

• Method: spectral line observations

• Challenge: target needs to be bright enough for the 
individual channel maps to have high S/N ratio; no 
background cloud / envelope contamination

• Done for a handful of disks

• Now almost routine task with ALMA



Disk rotation

HD 21997,  Kóspál et al. (2013)



Line broadening

• Typically: rotational + thermal

• HD 163296: evidence for turbulent broadening 
(Hughes et al. 2011)



• Azimuthal variations are interesting because they 
would indicate additional effects:

- self-gravity

- protoplanets

- dust traps

- vortices

Azimuthal symmetries?

van der Marel 
et al. (2013)

Regály 
et al. 
2012



Disk composition − dust
• Dust dominates the opacity + dust makes the planets

• Mainly silicates

• Dust processing (amorphous → crystalline)

• Grain growth (submicron → mm)

Henning (2010)

Sargent (2009)



Disk composition − gas
• 99% of the total mass of ISM

• 99% of the total mass of disks (at least initially)

• Difficult to detect (H2 has no easily observable lines)

• Ways to observe the gas:

- Disk accretion (recombination lines, excess hot 
continuum)

- MIR mol.
lines

- FIR mol.
lines



Disk composition − gas



Dependence on stellar mass
• Disks have been detected around

- Brown dwarfs

- T Tauri stars of various masses

- Herbig Ae/Be stars

• Expectation: higher
mass stars require
more mass to pass
through their disks

• Mdisk / Mstar ~ 0.01



Dependence on stellar mass

• What about more massive stars?

• No disks around optically visible O stars

• Mdisk / Mstar < 10−4 for Mstar > 10 M☉

• Cause?

- High photoevaporation rate (disk disappears 
by the time the star becomes visible)

- Different star formation mechanism than for 
lower-mass stars



Dependence on stellar mass

• No clear correlation between disk size and stellar 
mass

• Scale height - stellar mass? Disks around lower 
mass stars tend to be flatter


