Protoplanetary Disks
and [ heir Evolution

Jonathan P. Williams & Lucas A. Cieza
Annu. Rev.Astron. Astrophys. 201 |, 49:67-117



Circumstellar disks

Disks accompany the birth of all low-mass
stars

Present for millions of years

Their material builds up the star & planets

Emit at IR and mm wavelengths — measure
mass, size, structure, composition



The isolated star formation paradigm
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Circumstellar disks

ALMA

Direct imaging (HST or 8-meter ground-based)

Near-IR interferometry

Mid-IR interferometry

Magnetospheric
accretion

Mﬂs disk Dust inner rim Plar.\et-formmg
region

0.03 AU 0.1..1TAU

UV continuum, Near-IR dust 10AU
H-recombination lines continuum
Near-IR continuum Mid-IR: (Sub)millimeter:
(origin unclear so far) dust continuum dust continuum 100 AU
+ atomic lines (Br-y) + molecular lines + molecular rot-lines
+ occasional molecular (H,0, CO,, ...)

lines (H,0, CO, OH)

Dullemond & Monnier 2010



First statistical studies
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Evidence for flathess
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Evidence for flathess

Protoplanetary Disks iAol McCaughrean &
Orion Nebula O’Dell (|995)

PRC95-45b - ST Scl OPO - November 20, 1995

M. J. McCaughrean (MPIA), C. R. O’Dell (Rice University), NASA



New discoveries

Infrared Space Observatory (ISO)
Spitzer Space Telescope
Herschel Space Observatory

Ground-based mm interferometers: SMA,
PdBl, CARMA,ALMA



Info on disks

® Regular reviews: Protostars & Planets
conference series

® ARA&A papers:
- cosmic silicates (Henning 2010)
- inner disks (Dullemond & Monnier 2010)
- debris disks (VWyatt 2008)

- dynamical processes (Armitage 201 |)



Circumstellar disks
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Classification of YSOs

® |R-based classification: —
Lada & Wilking (1984) <7

® Class I-II-IIl g SRNEN

class I
>=77 /\
® Spectral slope : -

between 2 and 25 pm " |

class 11

dlogvF, dlogiF, £
dlogv — dlogh "

XIR =

class 111

® Flat spectrum;Class 0 .~

o CTTS/WTTS

11 12 13 14 15

EW(Hx) ~ 10 A Log i




Classification of YSOs

Table 1 Classification of young stellar objects

Class SED slope Physical properties Observational characteristics

0 — M v > Mar > M gisk No optical or near-IR emission

| ar > 0.3 M iar > Meny ~ M gig1c Generally optically obscured

ES —0.3 <ar < 0.3 Intermediate between Class I and 11

I1 —1.6 < ap < —0.3 M giste/ M star ~ 1%, M epy ~ 0 Accreting disk; strong He and UV

I11 ar < —1.6 M gisk/ M star K 1%, Meny ~ 0 Passive disk; no or very weak accretion
Problems:

® SED is ambiguous: objects with different
amount/distribution of material can have similar

SEDs

® Example: edge-on disks are highly extincted —
seem less evolved



Disk formation

Theoretical calculations: Terebey, Shu & Cassen (1984)
® Uniformly rotating isothermal sphere

® Equilibrium is unstable to collapse

® Disks grow rapidly with time: R(t) ~ (Q%t3

® Various masses and sizes

® Role of magnetic field: unclear, but doesn’t support
the cloud from collapsing

® Disks form within 10* years



Disk formation

Observations

® Disks are visible due to polar
cavity in the envelope

® |Inhward motions in cores’
Observed.

® Direct detection of gas flow
onto a disk? Not observed yet.

® |maging embedded disks: long wavelength to see
through the envelope; >arcsec resolution to match

disk sizes @ mm interferometers



Rapid transport in disks

® |orgensen et al. (2009): |.Imm continuum survey
of 20 embedded YSOs

® Disk flux is typically 4x higher in Class O than in
Class .

® (Class O sources are also hotter.

® Masses in both Class 0 and Class | are the same
~ 0.02 - 0.1 Mo ;median disk mass = 0.04 Mo.

® Envelope mass declines by x10 from Class 0 to
Class |

® Material is rapidly transported through the disk



Rapid transport in disks

Cause of rapid transport: disk instability
Gravitational instability during early formation
Sporadic bursts of high accretion (FU Orionis)
Prevents the disk from growing too much in mass

Another evidence for episodic accretion:
envelope infall rates are > |0x higher than disk
accretion rates in Class | YSOs — mass builds up
in the disks until it bursts

Episodic accretion: possible solution for the
luminosity problem



From Class | to Class
Class 0 + Class | phase lasts about 0.5 Myr

By the end of Class |, envelope disperses
Disk mass is typically 0.0] Msar

Star formation process is effectively over
Disk: protoplanetary, not protostellar
Disk material:

= accretes onto the star
- disperses due to photoevaportion

- coagulates into larger bodies



Properties of Class |l disks

=

® Extinction is low — stellar properties
can be observed in the optical/near-IR

® Minimum mass solar nebula: lowest
mass primordial disk that could have formed the
solar system (computed by scaling planetary
composition to cosmic abundances)

e MMSN =0.01 = 0.07 Mo



Disk mass: basics

Best determined from (sub)millimeter
observations

Dust continuum emission is optically thin for
most of the disk

Optlcal depth: Ly = ._[ /OKUdS — Kl’z

Kk, = 0.1 <101;)HZ>/3 cm’ g—l

where 2 is the projected surface density
B is related to dust size and composition

Dust continuum emission is optically thin for
most of the disk



Optically thin emission
In circumstellar disks: f ~ |
K(I mm) =0.03 cm?g”!
T(l mm) = | where 2 =30 g cm™
Corresponds to 10 AU in the MMSN
Corresponds to 0.07” in Taurus

Disks are larger than this = most of the resolved
emission is optically thin
Disk mass: ,, (g Fd- )

as + dust) = < B.(T) B, ~ 2v*kT /c’




Disk mass distribution

Large mm surveys:
Beckwith et al. (1990) Taurus-Auriga
Andre & Montmerle (1994) Ophiuchus

Andrews & Williams (2005, 2007)
Median disk mass for Class | YSOs: 5 Mjyp
MEdIan Mdisk/ Mstar — 0.009

Mass distribution in log mass bins: flat until 50 My,



Disk mass distribution
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Uncertainties in mass

Gas-to-dust ratio is assumed to be interstellar (100)
— overestimation

Hidden mass in large grains = underestimation

Rule of thumb: observations at A is sensitive to
grains with sizes of < 3\

Indications for severe underestimation:

® measured disk masses are lower than what is
expected by integrating the accretion rate over
the protostellar age

® not enough massive disks to match the
statistics on the incidence of exoplanets



Disk radius

Difficult to measure: outer parts are cold and faint

Disk silhouettes in Orion:
radii between 50 and 194 au
median radius of 75 au

Millimeter disk images: requires interferometry

First large interferometric survey Dutrey et al. (1996):
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Dust size vs. gas size

® Problem: dust sizes # gas sizes (size from CO lines
larger than from dust continuum)
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Dust size vs. gas size

Possible solutions:

Change in the gas-to-dust ratio or dust opacity at a
certain radius

Exponentially tapered density profile:

My (RN | (R\7]
2<R>=<2—y>2ﬂ‘\§3 (R) exp —(—)

Apparent size discrepancy! mm continuum is
optically thin, CO line emission is optically thick —
can be detected further out

Rc: characteristic radius where the density profile
begins to steepen significantly from a power law,
typically Rc = 30 — 200 au




Parameter correlations

® Between disk size
and disk mass:

N/ 1.630.3
11/[[1 X RL'

® Between disk size
and stellar
properties: no
correlation

AJ [u]

Andrews et al. (2009)
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Disk structure — 2

Resolved mm image of the disk = total mass + radial
mass distribution

Usual parametrization: power law: 2 ~ R7P
p=0..1
Exponentially tapered edge
Mg (RN [ R\
2(R) = (_—V)ZITRE (R() exp _— (E) _
Approximates 2 ~ R™Y for R << Rc

Y =-0.8..0.8 (mean 0.1)
2. distribution is quite flat (cf. p=1.5 for MMSN)




2. distribution

p exponent for MMSN is very uncertain

Let’s compare directly the absolute value of 2 at

different radial
distances

2=10..100 g cm™
at 20 au

Good match
Toomre parameter:
Q(R) = cQ/7GX

Class Il are typically
gravitationally stable
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® H - vertical scale height

Disk structure —

® First idea of a flared disk:

Kenyon & Hartmann (1987)

® H must increase with R

® Density:

p(R, Z) =

S (R)

V2t H

exp (

® Scale height is

ZZ

power-law:
H ~ R", with

h=13..15
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Disk structure — v

In Class ll: Mugisk € Mtar

Expectation: Keplerian velocity field
Method: spectral line observations

Challenge: target needs to be bright enough for the
individual channel maps to have high S/N ratio; no
background cloud / envelope contamination

Done for a handful of disks

Now almost routine task with ALMA



isk rotation
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Line broadening
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® Typically: rotational + thermal

e HD 163296: evidence for turbulent broadening
(Hughes et al. 201 1)



Azimuthal symmetries!

® Azimuthal variations are interesting because they
would indicate additional effects:

- self-gravity
- protoplanets

= dust traps

= vortices

Regaly
etal. |
2012

van der Marel
et al. (201 3)
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Disk composition — dust

® Mainly silicates

Interstellar dust

Astronomical
silicates
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Dust dominates the opacity + dust makes the planets

® Dust processing (amorphous — crystalline)
® Grain growth (submicron = mm)
Henning (2010)
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Disk composition — gas

99% of the total mass of ISM
99% of the total mass of disks (at least initially)

Difficult to detect (H2 has no easily observable lines)

Ways to observe the gas:

= Disk accretion (recombination lines, excess hot

continuum)

= MIR mol.
lines

= FIR mol.
lines

Magnetospheric
accretion

UV continuum,

Near-IR continuum

+ occasional molecular

+ molecular lines + molecular rot-lines



Disk composition — gas
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Dependence on stellar mass

® Disks have been detected around

= Brown dwarfs

= [ Tauri stars of various masses

- Herbig Ae/Be stars | s
102 | Opiucl )

® Expectation: higher I

mass stars require T ol ML EE T e §eenn
S : .3, el Al :
Mmore mass to pass = “ 0w Ostars§  §

through their disks 100 E . .
53%4ﬁ}.:'.
® Muyisk / Mstar ~ 0.01 g

10-'E Brown dwarfs

102 10! 100



Dependence on stellar mass

® VWhat about more massive stars!?

® No disks around optically visible O stars
® Myisk / Mstar < 1074 for Msaar > 10 Mo

® Cause!

- High photoevaporation rate (disk disappears
by the time the star becomes visible)

= Different star formation mechanism than for
lower-mass stars



Dependence on stellar mass

® No clear correlation between disk size and stellar
mass

® Scale height - stellar mass? Disks around lower
mass stars tend to be flatter



