The Inner Regions of Protoplanetary Disks C.P. Dullemond & J.D. Monnier

Annual Review of Astronomy and Astrophysics, Vol. 48, pp. 205–239, 2010

Ábrahám Péter

Accretion processes, 2014. október 15.

GAS INWARD OF THE DUST RIM

The assumption of optically thin gas inward of the rim is rather crude. Muzerolle et al. (2004): for low accretion rates the gas is sufficiently transparent, but for higher rates (> 10^{-8} M_{sun}/yr) the gas is optically thick.

First question to clarify: gas opacities!

- * $T_{rim} < T < T_{star}$
- * appropriate densities
- * Rosseland or Planck-mean gas opacities are valid only for optically thick medium (weighting factor: Planck function; or Rosseland: $u(\nu,T) = \partial B_{\nu}(T)/\partial T$)
- * Within the rim gas is optically thin, externally illuminated

Frequency-dependent opacities

- gas temperature is too low for continuum opacity sources (like H⁻) except for tenuous surface layers
- * billions of molecular and atomic lines
- calculated for
- T = 2000 K
- rho~4x10⁻⁹ g cm⁻³

But molecules can be easily destroyed (collisions, UV) It would reduce opacity

Frequency-dependent opacities

- * how to handle the lines?
- opacity is high at line centers, but low between lines (+ weak continuum)
- * 0.2 um 0.4 um
- * assuming LTE
- Muzerolle et al. (2004): treat
 the gap separately from
 the rest (mean opacity)

Structure of the Dust-Free Gas Inner Disk

- D'Alessio models, but dust opacities are replaced by appropriate gas mean opacities
- * geometrically thin disk
- * only half of the star...
- * photons hit the disk at $\varphi(R) \simeq \frac{4}{3\pi} \frac{R_*}{R}$

 gas disk surface layer ~2000K; half of its NIR radiation is radiated down to the disk interior

* midplane temperature: $T_{\text{mid}} = T_* \sqrt{\frac{R_*}{R}} \left(\frac{1}{4} f \varphi(R)\right)^{1/4} = \left(\frac{R_*^3 f}{3\pi}\right)^{1/4} T_* R^{-3/4}$

Structure of the Dust-Free Gas Inner Disk

* surface density: Shakura-Sunyaev accretion disk theory

- $\dot{M} = 3\pi \Sigma_{\text{gas}} \nu_t; \qquad \nu_t = \alpha k T_{\text{mid}} / \mu_g \Omega_K$ $\Sigma_{\text{gas}}(R) = C \dot{M} R^{-3/4}, \quad \text{with} \quad C \equiv \frac{\mu \sqrt{GM_*}}{(3\pi)^{3/4} R_*^{3/4} \alpha k T_* f^{1/4}}$
- * with the assumed opacities it shows that the inner gas disk is vertically optically thick for the surface layer's radiation
- * Pressure scale height: $H_{p}/R = 0.0167 (R/AU)^{1/8}$
- *at 0.5 AU Hp=0.6 Rstar
- * geometrically thin approximation fails!

Shadow on the dust rim

- * radial integration of optical depth
- * teta(rim)=0.2/1.5=0.133
- * shadow in the mid plane
- cannot hide the rim,
 - especially at 0.2-0.4um

PROBING THE INNER DUST-FREE DISK WITH GAS LINE OBSERVATIONS

- Search for Molecules in the Inner Dust-Free Disk
- Expectation: strong molecular emission
- * Observation: deficit of molecules in the dust-free inner disk
- * CO fundamental lines are commonly found (formed in the surface layer between 0.1 and 2 AU, Najita et al. 2007)
- CO overtone lines are rare, excited at >1000 K by collisions in the innermost part of the disk (0.05-0.3 AU)
- its lack may suggest that molecules are destroyed in the dust-free region
- *or maybe density is too low

NIR spectrointerferometry

- Visibility as a function of wavelength
- * Differences in continuum and line visibilities?
- * Normal Herbig Ae star HD 104237 (Tatulli et al. 2007). Shocking result: Br gamma is coming from an extended region just inside the dust rim (and not the accretion shock)!
- Larger datasets (Kraus et al. 2008, Eisner et al. 2009) find a diversity of size scales for the Br-γ emission, from point-like to extended.
- Probably related to inner disk wind

Where are the molecules?

- * Why YSO disks do not show stronger emission from molecules in the dust-free inner disk, given that the molecular emission is regularly seen in the surface layers of the disk in the dusty regions of these disks?
- * there does seem to be evidence for molecules right within the dust rim, where dust may protect molecules

Probing the Dynamics of the Inner Gas Disk

* Spectroastrometry

The accretion path: SINFONI observations

Kóspál et al. 2011, ApJ:

Three VLT/SINFONI observations in the JHK bands

SINFONI: AO-assisted integral field spectrograph on UT4

Medium resolution: R=2400 in J,

4100 in H, 4400 in K

Calibration with G-type stars and the solar spectrum

Spectro-astrometry with SINFONI

Measure the position of the source as the function of wavelength

Extended emission moving at different velocities: source position at different wavelengths will deviate from the source position in the continuum

Example: CO fundamental lines at 4.7 µm

The origin of the hydrogen lines

Inner disk/boundary layer?

In the case of a Keplerian disk between the stellar surface and 0.04 AU the line profiles would be double peaked, but the spectroastrometric signal would be much lower than observed

We detect high-velocity gas at larger distance from the star than predicted by a Keplerian disk model.

