Debris disks in nearby young moving groups in the ALMA era

<u>Ágnes Kóspál</u> and Attila Moór Konkoly Observatory, Budapest, Hungary

IAU Symposium 314, Young Stars and Planets Near the Sun, May 13, 2015

Structure of the talk

- Introduction to debris disks
- Dust in debris disks
 - pre-ALMA results
 - ALMA results
 - open questions
- Gas in debris disks
 - pre-ALMA results
 - ALMA results
 - open questions

Circumstellar disks

The isolated star formation paradigm Class 0: Class I-II: 10⁴ yrs; 10-10⁴ AU; 10-300 K 10⁵⁻⁶ yrs; 1-1000 AU; 100-3000 K Class II-III: Class IV: 10⁶⁻⁷ yrs; 1-100 AU; 100-5000 K 10⁷⁻⁹ yrs; 1-100 AU; 100-5000 K

Circumstellar disks

	Protoplanetary disk	Debris disk	
Age	< 10 Myr	10 Myr – 10 Gyr	
Dust	primordial > 10 M_{\oplus} optically thick $L_{IR}/L_{bol} > 10^{-2}$	second generation < 1 M_{\oplus} optically thin $L_{IR}/L_{bol} < 5 \times 10^{-3}$	
Gas	primordial gas/dust ratio = 100	secondary(?) very gas-poor	
Geometry	broad disk	sk mostly narrow ring(s)	

Characteristics of debris disks

• SED: single modified blackbody or two blackbodies

Debris disks in young moving groups

- Debris disks in YMGs are more frequent and more massive than around older field stars
- Many of the best studied debris disks are YMG members:
 - HR 4796A (TWA) β Pic (BPMG) AU Mic (BPMG) 49 Cet (Argus)
- They have precise, reliable ages, covering the 10–200 Myr range

YMGs: interesting evolutionary phase

- Protoplanetary disks disappear
- Debris disks appear
- Terrestrial planets are forming (final accumulation)
- Coagulation of planetesimals in the outer region is on-going

Spatially resolved data on debris disks

- Most debris disks are not spatially resolved → degeneracy in disk parameters
- Dust size + optical properties \leftrightarrow temperature \leftrightarrow radial location
- Resolved data on debris disks:
 - scattered light images
 - resolved thermal emission

Ágnes Kóspál: Debris disks in the ALMA era

Apai et al. 2015)

Distance ["]

Distance ["]

0

-10

0

Scattered light vs. thermal emission

Scattered light:
 sensitive to small dust →

affected by radiation pressure

 Millimeter emission: trace mm-sized grains → trace the parent planetesimal belt

STIS Mid-Plane Normalized Image

 Disk resolved in the mm before ALMA: only about a dozen, and not very well resolved

Atacama Large Millimeter/Submillimeter Array

Ágnes Kóspál: Debris disks in the ALMA era

10

Atacama Large Millimeter/Submillimeter Array

- 54 12m antennas + 12 7m antennas
- 0.4 3.1 mm (84 950 GHz)
- Spatial resolution: 0.03" 3.4"
- Spectral resolution: 3.8 kHZ 15.6 MHz (> 0.01 km/s)

ALMA and debris disks

- ullet ALMA observations trace large dust grains o planetesimals
- ALMA can resolve debris disks in the close-by young moving groups
- Debris disks have low surface brightness, but ALMA is very sensitive
- Can detect both the continuum and line emission in one setup

ALMA and debris disks

- ALMA observations trace large dust grains \rightarrow planetesimals
- ALMA can resolve debris disks in the close-by young moving groups
 Debris disks have low surface brightness, but ALMA is very sensitive
 Can detect both the continuum and line emission in one setup

Disk structure (radial+azimuthal)
Stirring mechanism
Interaction with planets

-Gas in debris disks

ALMA gallery of resolved debris disks

Dust production in debris disks

- The **lifetime** of debris dust grains is very short due to radiation pressure
- Dust grains are continuously replenished through collisions between planetesimals
- For **destructive collisions**, the collision velocity must exceed a certain critical value
- For such high velocities, the planetesimals need to be dynamically stirred
- Proposed **stirring** mechanisms:

-self-stirring (Kenyon & Bromley 2004)

-planetary stirring (Wyatt 2005, Mustill & Wyatt 2009)

Predictions of stirring models I

- Self-stirring & planetary stirring with an "inner" planet: collisional cascade is ignited in the inner disk first, propagates outwards → inside-out process
- Consequence: rising surface density profile (Kennedy & Wyatt 2010)
- ALMA observations confirm this:
 - AU Mic (BMPG, 20 Myr): $\Sigma \sim r^{2.8}$ (MacGregor et al. 2013)
 - HD 107146 (80-200 Myr):

Ricci et al. 2015

Predictions of stirring models II

17

- Self-stirring model: the pace of outward propagation of collisional cascade is **faster** for more massive disks
- Consequence: existence of dust-producing planetesimals at large radii in a young system requires very large initial disk masses → check the "feasibility" of self-stirring with ALMA (see also L. Vican's poster #3.09) ⁴⁰⁰ [1: #199672] (N.1.4)
- Too large disks are good candidates for planet searches
 - -HR 8799 (Columba)
 - -HD 95086 (LCC)
 - $-\beta$ Pic (BPMG)

Planet-disk interactions

- \bullet In the planetary stirring model, the planets exert secular perturbations on the planetesimals \rightarrow leads to stirring
- Other perturbations that have observable effects on the disk structure:
 - -Secular perturbations
 - -Resonant perturbations

Secular perturbations

- Eccentric planet causes: tightly wound spiral in the disk; eccentric debris ring
- Inclined planet causes: spiral + warp in the disk
- Disk structure can be used to deduce the planet's orbital parameters #00000000 t: 0.00000e+00y

Resonant perturbations

- May lead to structures like the Kirkwood gaps in the Solar System
- Certain zones are empty, others collect planetesimals
- Can cause sharp inner edge
- Can cause special patterns

Asteroid Main-Belt Distribution 350 Mean Motion Resonance (Asteroid: Jupiter) 3:1 2:1300 of Asteroids 250 200 Number c. 50 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 2.0 2.1 2.2 2.3 2.4 2.5 2.6 Semi-major Axis (AU) (Figure credit: A. Chamberlain)

Observational evidence for interactions?

- Clumpy structure is often observed (pre-ALMA)
- In some cases these couldn't be confirmed (e.g. Vega, Marsh et al. 2006, Hughes et al. 2012) 8
- In other cases, the observed structures may be robust (ε Eri, Lestrade & Thilliez 2015)
- ALMA results:
 - possible gap in HD 107146
 - clump in β Pic

Distance ["]

Declination Offset [arcsec]

4

2

Right Ascension Offset [arcsec]

(Ricci et al. 2015)

Open questions about the dust

- Are debris rings / planetesimal belts really narrow in most cases?
- Are the measured location, width, radial density profile of debris rings consistent with the predictions of different stirring models? What's the dominant stirring mechanism?
- What fraction of debris disks show signs of planet-disk interaction? Does it depend on stellar parameters? What kind of interactions are dominant?
- For systems with known directly imaged planet, are the planet parameters consistent with what the observed disk structure implies? Are the planetesimal belts always wide?

Gas in debris disks

KONKOL

- \bullet Debris disk \leftrightarrow dust grains
- Debris disk = gas-poor disk (but how poor is poor?)
- Icy planetesimals are expected to release gas when they collide or migrate into warmer regions!
- Not much volatiles, not very efficient production mechanisms → not much gas production
- Very few gaseous debris disks are known
- For a long time, the only example had been β Pic (circumstellar gas first suspected by Slettebak 1975)

 β Pictoris.—The spectrograms show a normal, fairly rapidly rotating ($v \sin i = 120 \text{ km s}^{-1}$) A5 IV star, but with very strong, sharp, and deep absorption components of Ca II H and K centered within the normal, broadened H and K lines. The spectrum is similar to that of α Oph, in which interstellar Ca II K was pointed out by Münch and Unsöld (1962), but the sharp absorption components are much stronger in β Pic than in α Oph. They are evidently of interstellar or circumstellar origin. Dr. Arlo Landolt very kindly measured UBVRI colors for β Pic in 1974 April, and these correspond to the colors of a normal A5 star.

Gaseous debris disks

Name	Spectral type	Age	Membership	Fractional luminosity	Detected lines
β Ρіс	A6	20 Myr	βPic	2.6 x 10 ⁻³	CO, CII, CI, OI,
49 Cet	A1	40 Myr	Argus	1.1 x 10 ⁻³	CO, CII, CI
HD 21997	A3	30 Myr	Columba	5.7 x 10 ⁻⁴	СО
HD 172555	A7	20 Myr	βPic	7.4 x 10 ⁻⁴	01
HD 32297	AO	15-500 Myr	Field	4.4 x 10 ⁻³	CII
eta Tel	AO	20 Myr	βPic	2.4 x 10 ⁻⁴	CII
HD 131835	A2	16 Myr	UCL	3.0 x 10 ⁻³	СО

Gaseous debris disks

KONKOLT

Pre-ALMA results:

- All stars are young
- All stars have A spectral type
- With one exception, all have high (> 5 x 10⁻⁴) fractional luminosity
- Within 125 pc, there are 9 young, A-type stars with bright ($L_{IR}/L_{bol} > 5 \ge 10^{-4}$) debris disks, 6 of them contain gas
- β Pic, Columba, Argus moving groups' brightest members all contain gas
- Gas in young massive debris disks around A-type stars is frequent

ALMA survey of young debris disks II

- 2012.1.00688 (PI: J. Carpenter)
 - 23 BAF-type stars in Sco-Cen
 - 3 detected in gas (CO J=2-1)
- 2012.1.00437 (PI: D. Rodriguez)
 - 10 debris disks in nearby moving groups
 - No detection
- 2013.1.00457 (PI: D. Rodriguez)
 - 15 low-mass members of TWA
 - One detected in gas (CO J=2-1)

(see also D. Rodriguez' poster #1.13)

Origin of gas in young debris disks

- Gaseous debris disks are young → information about the protoplanetary/debris transition, and the very beginning of the debris disk evolution
- Gas can be **secondary**
 - sublimation of planetesimals, photodesorption from dust grains, vaporization of colliding dust particles, collision of comets or icy planetesimals
 - examples: β Pic, HD 172555, eta Tel, HD 32297
- Gas can be **primordial**
 - hybrid disks
 - example: HD 21997

KONKOLY

29

- Dust mass: 6.4 M_{Moon}
- CO gas mass: 0.003 M_{Moon}
- 30% of gas in a clump

- CO gas mass: 4.9 M_{Moon} (based on optically thin C¹⁸O detection)
- Secondary gas scenario: gas production rate needs to be too high
- Primordial gas scenario: possible; total gas mass: $40 M_{\oplus} (3250 M_{Moon})$

Gas in older debris disks?

- HD 107146 (Ricci et al. 2015)
 - 80-200 Myr
 - search for gas lines with ALMA no detection
 - upper limit for CO mass: 0.00015 M_{Moon}
 - CO-to-dust mass ratio: < $10^{-5} \rightarrow$ smaller than even in β Pic
- Fomalhaut (Matrà et al. 2015)
 - 440 Myr
 - search for gas lines with ALMA no detection
 - upper limit for CO mass: 0.0002 M_{Moon}
 - CO-to-dust mass ratio: < $10^{-4} \rightarrow$ smaller than even in β Pic

Open questions about the gas

- Is there gas only around A-type stars? If yes, why?
- What is the frequency of hybrid disks? How long can the primordial gas last?
- What is the composition of the gas? Other molecules (HCN, HCO⁺)?
- What is the dominant gas production mechanism in case of secondary gas?
- How does the gas evolve?

→ Lots of work for ALMA!