ALMA observations of the FU Orionis-type young eruptive star V346 Nor

Ágnes Kóspál

Konkoly Observatory, Budapest, Hungary

MPIfR Colloquium, November 25, 2016

Introduction

- PhD at Konkoly Observatory (Budapest, Hungary), 2009
- Half year at the Spitzer Science Center (Pasadena, CA), 2006
- Three years at Leiden Observatory (The Netherlands), 2008 2011
- Three years at the **European Space Agency** (ESA/ESTEC, The Netherlands), 2011 2014
- Tenure track position at Konkoly Observatory (2014)
- Current funding from the Hungarian Academy of Sciences: "Dynamics of circumstellar disks – star and planet formation in the ALMA era" (2014 – 2019)
- Furute funding from the European Research Council: "SACCRED – Structured ACCRetion Disks: initial conditions for planet formation in the time domain" (ERC-StG 716155) (2017

- 2022)

Structure of the talk

- Introduction to episodic accretion
- Open questions
- Our target: V346 Nor
- New ALMA observations:
 - 1.32 mm continuum
 - J = 2-1 line for ¹²CO, ¹³CO, and C¹⁸O
- Our ongoing millimeter CO surveys of FUors

The isolated star formation paradigm

Time-variable accretion

Long-term evolution

+ Instability-driven accretion outbursts

Most spectacular appearance: young eruptive stars

FU Orionis-type objects (FUors)

- Episodic, high accretion outbursts of young stars
- Three reasons why FUors are interesting:
 - Build stars and (maybe) solve the protostellar luminosity problem

- Accretion rate: 10⁻⁴ M⊙/yr →
 0.01 M⊙ in about 100 yrs
- A few dozen outbursts are enough to build a low-mass star
- Star spends most time in quiescence, this could explain the average low luminosity of protostars

FU Orionis-type objects (FUors)

- Episodic, high accretion outbursts of young stars
- Three reasons why FUors are interesting:
 - Build stars and (maybe) solve the protostar's luminosity problem
 - Make the protostars optically visible

FU Orionis-type objects (FUors)

- Episodic, high accretion outbursts of young stars
- Three reasons why FUors are interesting:
 - Build stars and (maybe) solve the protostar's luminosity problem
 - Make the protostars optically visible
 - Set time-variable initial conditions for terrestrial planet formation

- In outburst: several 100 L $_{\odot}$
- Inner disk: dust grains evaporate, crystallize, ice mantles disappears, snowline moves outward
- Return to the inital state needs time, may have a cumulative effect

Open questions

- Mass of FUors (few progenitors are known)?
- Mass and size of FUor disks and envelopes (tranditional claim: large)?
- Infall rate from the envelope onto the disk? Mismatch between infall rate, transport rate within the disk, and accretion rate onto the star?
- Information on the infalling material (origin, path, processing, chemical composition)?
- Envelope dispersal: do we see the expected diversity? How does the dispersal happen? Can we see the predicted evolutionary trend in the gas?
- Is the "FUor phase" equivalent to the Class I/II transition?

Why ALMA?

- FUor outbursts are intense episodes in the intimate relationship between the young star and its environment
- Two-way interaction:

inhomogeneous circumstellar matter time-variable accretion

• ALMA can:

- detect disks and envelopes (sensitivity)
- reveal their structure (spatial resolution)
- extract kinematics (spectral resolution)

Our target: V346 Nor

- Outburst in about 1980 (Graham 1983)
- Southern object (RA = 16 h, DEC = -44°)
- Location: Norma 1, Sa 187,
 d = 700 pc (Reipurth 1981)
- SED indicates a massive envelope (0.5 – 1 M⊙) (Sandell & Weintraub 2001, Ábrahám et al. 2004)
- Associated with a Herbig-Haro object (HH 57) and a molecular outflow (Evans et al. 1994)

ALMA observations of V346 Nor

J2000 Declination

- J=2-1 line of ¹²CO, ¹³CO, and C¹⁸O, 1.3 mm continuum in one single setting in B6
- Cycle 2 (PI: Kóspál, observations: 2015 Apr - 2016 Jan)
- 12 m array observations (2 h on-source correlation time)
- ACA (5 h on-source correlation time)
- Total Power Antennas

Sandell & Weintraub (2001)

Continuum results

KONKOL

Sandell & Weintraub (2001)

Continuum results

- 70 µJy rms noise, peak centered on the optical stellar location
- Elongated central source (<0.2" x 0.9" \rightarrow i > 77°; total mass: 0.1 0.3 M $_{\odot}$)
- Fainter, extended emission tracing the outflow cavity walls

Continuum results

• Cannot be fitted with a single Gaussian in the visibility space

CO integrated intensity maps

¹²CO

CO integrated intensity maps

(200) (200

¹³CO

- Structure is very similar to that of typical Class 0 protostellar systems
- Compact disk + flattened envelope
 + jet + outflow cavity walls (not all of them visible in CO)

Lee et al. (2014)

CO line profiles

CO outflows

20

Outflow masses, momenta, energies

Comparison to a sample of 28 molecular outflows driven by low-mass protostars

(Dunham et al. 2014)

Our ongoing mm CO surveys for FUors

- APEX: AR 6A/6B, Bran 76, HBC 494, Parsamian 21, Haro 5a IRS, OO Ser, V346 Nor, V900 Mon (J=3–2 for ¹²CO and ¹³CO, J=4–3 for ¹²CO); Kóspál et al. (submitted)
- IRAM PdBI + 30 m: V1057 Cyg, V1515 Cyg, V1735 Cyg, V2492 Cyg, HBC 722, RNO 1B/1C, V733 Cep (J=1-0 for ¹³CO and C¹⁸O); Fehér et al. (in prep.)
- ALMA Cycle 2: V346 Nor (J=2–1 for ¹²CO, ¹³CO, and C¹⁸O); Kóspál et al. (in prep.)
- APEX: L1551 IRS 5, V582 Aur, V883 Ori, HBC 494, V2775 Ori, FU Ori, V1647 Ori, V899 Mon, V960 Mon, Z CMa, IPTF 15afq, V723 Car, GM Cha (J=3–2 for ¹²CO and ¹³CO, J=4–3 for ¹²CO); (observations just finished)
- ALMA Cycle 4: AR 6A/6B, Bran 76, Parsamian 21, Haro 5a IRS, OO Ser, V900 Mon, Z CMa, L1551 IRS 5, V899 Mon, and V960 Mon (J=2–1 for ¹²CO, ¹³CO, and C¹⁸O) (observations in progress)
- IRAM NOEMA + 30 m: V899 Mon, V900 Mon, V960 Mon, V582 Aur (J=1–0 for ¹³CO and C¹⁸O); (observations in progress)
- JCMT: RNO 1B/1C, V1057 Cyg, V1515 Cyg, V1735 Cyg, V2492 Cyg, HBC 722, V733 Cep (J=3–2 for ¹²CO and ¹³CO); (observations are in the queue)

Ongoing FUor survey (APEX)

APEX ¹²CO integrated intensity + red- and blueshifted outflows

Kóspál, Ábrahám, Csengeri, et al. (submitted)

Ongoing FUor survey (IRAM)

IRAM PdBI ¹³CO integrated intensity

Fehér et al. (in prep.)

Thanks to the collaborators:

KONKOLY

- Péter Ábrahám (Konkoly Observatory)
- Timea Csengeri (MPIfR Bonn)
- Orsolya Fehér (Konkoly Observatory)
- Michiel Hogerheijde (Leiden Observatory)
- Christian Brinch (Univ. Copenhagen)
- Michael Dunham (Harvard-Smithsonia CfA)
- Eduard Vorobyov (Univ. Vienna)
- Thomas Henning (MPIA Heidelberg)

And to the Allegro ARC node in Leiden!