
An alternative method for omputing dipolestrengths
K Ballay and J M Benk}ozy Computer and Automation Institute, Hungarian Aademy of Sienes, P. O. Box 63,1518 Budapest, Hungary. balla�sztaki.huz Konkoly Observatory of the Hungarian Aademy of Sienes, P. O. Box 67, 1525Budapest, Hungary. benko�buda.konkoly.huAbstrat. In this paper we omplete the mathematial approah that aimed atomputation of energy levels of bounded states for hydrogen atom in strong magneti�elds previously. By this aomplishment, we are allowed to ompute any bound{bound dipole strengthfor hydrogen atom in strong magneti �eld. In our methodwe obtain the values of these quadrati funtionals diretly. We derive initial valueproblems for some �rst order ordinary di�erential equations, their solutions provideto us the required values. Proeeding this way, we avoid both the omputation ofeigenfuntions and the umbersome numerial integration of their ompositions. Thestability of our omputations an be proven. In opposite to the traditional way, theauray of dipole strengths may be ontrolled diretly.

1. IntrodutionAtomi data like transition probabilities and osillator strengths of hydrogen atom instrong magneti �eld are neessary for modelling the spetra of magnetized white dwarfor neutron stars. When omputing syntheti spetra we have to be aware of the strengthof the lines. For allowed transitions the determination of the required osillator strengthsand transition probabilities is based on the evaluation of the dipole matrix elements. Inthe ase of a one{eletron system, jpnmj2 is the squared Eulidean norm (the sum of thesquared omponents) of vetorpnm := Z 	�(En)	(Em)rdV (1)where 	{s are the eigenfuntions of the atomi system belonging to the eigenvalues Emand En, respetively, � denotes the omplex onjugate. The volume integral is takenover the whole spae. The eigenfuntions are assumed to be orthonormalized byZ 	�(En)	(Em)dV = Ænm: (2)



2Expression (1) is used generally and it inludes a number of onsiderations onerningthe atom and its interations with the eletromagneti �eld. For details see e.g. Shi�(1968). There are other formulae equivalent to (1) as it was desribed in the lassialreview by Bethe and Salpeter (1957).Traditionally, when omputing jpnmj2 for a pair of indies (n;m), the �rst step isthe numerial solution of the time-independent Shr�odinger problem twie, providing ineah turn an eigenvalue E and the orresponding eigenfuntion 	(E) simultaneously.Next, the value of the nonvanishing omponents of pnm in (1) is obtained by numerialintegration. Far from the enter the eigenfuntions beome inaurate in a lot ofmethods. The weight funtion r in (1) ampli�es the inauray. An other soure oferrors is the numerial integration algorithm itself. As a result, there is no pratialway to estimate the quality of numerial values for pnm.For the diamagneti Coulomb problem (hidrogen atom in strong, homogeneousmagneti �eld) we have elaborated an alternative method for determining thenonvanishing omponents of pnm. It seems to work in a wider lass of non-separableases (see Barza 1994), as well.
2. The general desription of the methodProvided the ylindrial oordinates �; z and the azimuthal angle ' around the axis zare introdued, one obtains the oordinates px; py; pz of vetor pnm as follows (subsriptsm;n are omitted):px = Z 1�1 Z 10 Z 2�0 	�(En)	(Em)�2 os'd'd�dzpy = Z 1�1 Z 10 Z 2�0 	�(En)	(Em)�2 sin'd'd�dz (3)pz = Z 1�1 Z 10 Z 2�0 	�(En)	(Em)�zd'd�dzThe orthonormalization ondition (2) rewrites asZ 1�1 Z 10 Z 2�0 	�(En)	(Em)�d'd�dz = Ænm: (4)On the other hand, the assumption that the magneti �eld H is parallel to axis z yieldsthe separation of the azimuthal angle in the eigenfuntion:	(En; �; z; ') = (2�)�1=2 exp(inn3') (En; z; �) (5)where n3 = 0;�1;�2; : : : is the magneti quantum number, i is the imaginary unit.We used atomi units (me = e = �h = 1) and inrodued the Larmor frequeny! = ejHj=2me. Substituting (5) into (3), one observes that depending on the value of�n3 def= n3(	(Em))� n3(	(En)) = nm3 � nn3 (6)



3the vetors pnm di�er qualitatively. Namely, when �n3 = 0 then px = py = 0 andpz = Z 1�1 Z 10  (En) (Em)�zd�dz: (7)(Arguments �; z in  are omitted.) When �n3 = �1 then pz = 0 andpx = 12 Z 1�1 Z 10  (En) (Em)�2d�dz py = � i2 Z 1�1 Z 10  (En) (Em)�2d�dz: (8)The latter value is not needed for jpnmj2. When j�n3j > 1, then pz = px = py = 0.Thus, in eah ase, the nonvanishing omponents lead to integrals of the formInms = Z 1�1 Z 10  (En) (Em)s(�; z)d�dz (9)
where s(�; z) = ( �z when �n3 = 0�2 when �n3 = �1: (10)

Let us take parity into onsideration. Sine  (E) is either odd or even with respet toz and so is s, one arrives at
Inms = 8>><>>: 2 R10 R10  (En) (Em)�zd�dz; if �n3 = 0 and �nz 6= �mz ;2 R10 R10  (En) (Em)�2d�dz; if �n3 = �1 and �nz = �mz ;0 otherwise, (11)
where �nz , �mz denote the z-parity of  n,  m, respetively. The normalization ondition(4) yields also an integral of the form (9) with n = m, s(�; z) = �, sine one hasZ 10 Z 10  2(En)�d�dz = 12 : (12)In order to simplify and unify the desription of the method, above indiating theeigenvalues Em or En in the notation of funtions derived from the eigenfuntions  , welater indiate additionally their parities in supersripts when it seems neessary.We adopt the framework of Balla and Benk}o (1996) (hereafter BB96) and de�ne (Em) as  (En) = 1Xk=0 fnk (z)�̂nk(z; �) (13)
where �̂n0(z; �); �̂n1 ; (z; �); : : : form the Liu-Starae basis belonging to eigenvalues�n0 (z); �n1 (z); : : : (see BB96, Barza 1996, Liu and Starae 1987) and orthonormalizedwith respet to � byZ 10 �̂nk(z; �)�̂nl (z; �)�d� � Ækl (14)uniformly with respet to z, while E�n, fn0 (z), fn1 (z); : : : solve the eigenproblemd2fkdz2 + [2E� � �nk(z)℄fk + 1Xk0=0[Ankk0(z)fk0 +Bnkk0(z)dfk0dz ℄ = 0; (15)�1 < z <1; k = 0; 1; 2; : : : ;



4with Ankk0(z) = (�̂nk ; �2�̂nk0�z2 ); Bnkk0(z) = 2(�̂nk ; ��̂nk0�z ); E� = E � !nn3 : (16)Due to normalizations (12) and (14),Z 10 1Xk=0[fnk (z)℄2dz = 12 (17)holds. In BB96 we proposed a method for omputation of f�nk(z)g1k=0, fAnkk0(z)g1k;k0=0and fBnkk0(z)g1k;k0=0 whih did not require the omputation of the Liu-Starae basisf�̂nk(z)g1k=0 itself. Next, instead of (15) we onsidered the trunated eigenvalue problemd2FNdz2 + BN (z)dFNdz + [AN (z)�MN (z)℄FN = �2E�NFN ; 0 < z <1; (18)with respet to eigenvalue(s) E�N and eigenfuntion(s) FN (z) = (fN0 (z); : : : ; fNN�1(z))Twhere fNk (z) are approximations to fk(z) of (15), T denotes the transposition. Here theentries of the skew-symmetrial matrix BN(z) were approximations to Bnkk0(z); k; k0 =0; : : : ; N � 1, while the entries of AN(z) approximated Ankk0(z); k; k0 = 0; : : : ; N � 1.The matrix MN (z) was diagonal, MN (z) = diag[�n0 (z); : : : ; �nN�1(z)℄, ontaining againnumerial approximations. Note that in fat AN (z);BN(z);MN(z) depended only onnn3 sine so did f�̂nk(�; z)g1k=0.In BB96 we also elaborated and desribed a method providing us with theapproximate eigenvalues E�nN without evaluating F nN (z). In order to proeed furtherand to get (9) with (12) when (13) is kept, we use the following splitting.s(�; z) = �s1(�)s2(z) (19)s1(�) = s(1)1 (�) � 1 or s1(�) = s(2)1 (�) = � (20)s2(z) = s(1)2 (z) � 1 or s2(z) = s(2)2 (z) = z: (21)Next, let Knmipq (z) = Z 10 �̂np (�; z)�̂mq (�; z)�s(i)1 (�)d� i = 1; 2: (22)Having Knmipq (z), (9) turns intoInms = 2 1Xk=0 1Xl=0Fnmijkl (23)where Fnmijkl = Z 10 fnk (z)fml (z)s(j)2 (z)Knmikl (z)dz j = 1; 2: (24)With this notations, (12) rewrites as2 1Xk=0Fnn11kk = 1: (25)



5(22) is an integral similar to the one we have omputed in BB96. Moreover, due tothe normalization of Liu-Starae basis, Knm1pq (z) � Æpq if �n3 = 0. In the Appendixwe update the formula and the equations for obtaining Knmipq (z) for other values ofthe indies. For getting suÆiently aurate results, the number of hannels may bedi�erent, this number is denoted by N when belongs to n and by M for m. When Nand M have been �xed, formulae (17), (23) and (24) yield approximations1 = 2 Z 10 FNT(z)FN(z)dz = 2 Z 10 FNT(z)Knn11(z)FN (z)dz (26)
Inms = 2 Z 10 FNT(z)Knmij(z)FM(z)dz (27)where Knmij(z) is a matrix with entries (Knmij(z))kl = s(j)2 (z)Knmikl (z), k = 0; : : : ; N�1,l = 0; : : : ;M � 1. Thus, (27) is a quadrati funtional and it may seem similar to(22). Appliation of ideas borrowed from Abramov et al (1980), Birger (1968) to theomputation of Knmipq (z), however, is worth for adjoint problems, only. In (24), however,ffnk (z)g1k=0 and ffmk (z)g1k=0 omes from the non-selfadjoint problem (15). Neither isits approximation (18) selfadjoint. Another version of di�erential fatorization due toBakhvalov (1973), however, admits extension to the evaluation of quadrati funtionalsof eigenfuntions of non-selfadjoint problems. Without going into the arguments leadingto the di�erential fatorization, we reall �rst the basi steps of Bakhvalov fatorizationin terms of the �rst order systemGN 0 + PN(z; E�)GN = 0; z1 � z � z1; (28)derived from (18) by introduingGN =  FNFN 0 ! ; PN(z; E�) =  0N �INAN �MN + 2E�IN BN ! : (29)Here z1 is small for n3 = 0, otherwise z1 = 0 and z1 is a large value. The left(=l) andright(=r) boundary onditions for G(z) at z1 and z1U l�zTG(z1) = 0 (30)and U rTG(z1) = 0; (31)where the z parity �z is equal e(=even) or o(=odd),U le(z1) =  0NIN ! ; U lo(z1) =  IN0N ! ; U r(z1) =  ��T1IN ! ; (32)0N and IN are quadrati zero and unit matries and �1 = (M1N � 2E�IN ) 12 . Now, weassume that the solutions of (28) satisfying (30) and (31), respetively, are representedas Gl�z(z) = Y l�z(z)l�z(z); Gr(z) = Y r(z)r(z); (33)



6where dY l�zdz + [I2N � Y l�z(Y l�zTY l�z)�1Y l�zT℄PY l�z = 0 (34)with Y lo(z1) =  0NIN ! ; Y le(z1) =  IN0N ! : (35)Equation for Y r(z) is the same, but the initial value isY r(z1) =  (�T1�1 + IN )�1=2�1(�T1�1 + IN )�1=2! ; (36)while ddz � (Y TY )�1Y TPY  = 0 for indies l�z and r. (37)In the latter formulae (28){(37) we omitted the index m(n).We extend the method to the omputation of the funtionals using the normalizationas follows. (26) rewrites asZ 10 GNT(z) ~Knn11(z)GN(z)dz = 12 ; (38)where ~Knn11 =  Knn11 0N0N 0N ! =  IN 0N0N 0N ! : (39)Let the right-hand side be deomposed into a sum R z1z1 = R zz1 + R z1z and the matriesHN l�z(z), HNr(z) and the vetors N l�z, Nr be de�ned byZ zz1 GNT(�) ~Knn11(�)GN(�)d� = N l�zT(z)HN l�z(z)N l�z(z); (40)Z z1z GNT(�) ~Knn11(�)GN(�)d� = �NrT(z)HNr(z)Nr(z):Then, disarding N ,dHwdz �Hw(Y wTY w)�1Y wTPY w � Y wTPTY w(Y wTY w)�1Hw � Y wT ~Knn11Y w = 0; (41)H l�z(z1) = 0N Hr(z1) = 0N w = l�z; r:Due to normalization the identitylT(z)H l(z)l(z)� rT(z)Hr(z)r(z) = 12 ; (42)holds for arbitrary but �xed point z, z1 � z < z1. For obtaining l�z(z) and r(z)we an use (42) and the ontinuity onditionY l�z(z)l�z(z)� Y r(z)r(z) = 0 (43)



7noting that by equation (34), one has Y TY � IN (for all indiies not indiated here).Then, l�z(z) = av1, r(z) = av2, where v1 is an arbitrary solution of(Y l�zT(z)Y r(z)Y rT(z)Y l�z(z)� IN)v1 = 0; (44)v2 = Y rT(z)Y li(z)v1; a = (vT1H l�z(z)v1 � vT2Hr(z)v2)� 12 : (45)Finally, let Inms = R zz1 + R z1z and letZ zz1 GNT(�) ~Knmij(�)GM(�)d� = M l�zT(z)Qnml�z(z)N l�z(z);Z z1z GNT(�) ~Knmij(�)GM(�)d� = �MrT(z)Qnmr(z)Nr(z); (46)where ~Knmij =  Knmij 0N�M0N�M 0N�M ! : (47)Then, for Qnmw one hasdQnmwdz �Qnmw(Y mwTY mw)�1Y mwTPmY mw�Y nwTPnwTY nw(Y nwTY nw)�1Qnmw � Y mwT ~KnmijY nw = 0 (48)Qnml�z(z1) = 0N�M Qnmr(z1) = 0N�M :Now, the funtionals an be obtained asInms = mlT(z)Qnml(z)nl(z)� mrT(z)Qnmr(z)nr(z): (49)
3. Numerial results and onlusionsIn order to verify our method we have hosen transitions whih over a wide range ofphyisially relevant parameters. In table 1 we have listed the dipole strengths omparedwith those published by Ruder et al (1994). The initial and �nal states are alwayslabelled by both their asymptoti quantum numbers: np, l, n3 if ! = 0 and n, n3, � if! ! 1. In �gure 1 a Grotrian-type diagram demonstrates the transitions omputedby us at a �xed �eld strength (! = 1). Altogether, Table 1 and �gure 1 show that noproblems arose when omputing transitions of di�erent type (neither when �n3 = 0nor when �n3 6= 0). DiÆulties appear neither at higher value of n3 nor for all threemagnitudes of the strength of the �eld.In the ases when former results exist, they and our ones on�rm eah other,although we used approximations of signi�antly lower order. We also have omputeddipole strengths for transitions, where { as far as we know { no values has been publishedyet.We want to summarize the main oneptual and pratial results of the paper.The theoretial point:



8
Table 1. Dipole strengths jpj2 for diamagneti Coulomb problem ompared with theresults of Ruder et al (1994) jpRj2. The strength of magneti �eld is parametrized byLarmor frequeny ! in atomi units. (! = 1 if jHj = 4:7 � 105 T.) The transitionsare labelled by their asymptoti quantum numbers. The number of hannnels used inomputation are given in brakets.transition ! jpRj2 jpj22p�1=0� 10 ! 3d�1=0� 11 1 1:189 1:187[2℄1:1892[6℄10 3:188 � 10�1 3:19 � 10�1[2℄3:188 � 10�1[4℄100 8:018 � 10�2 8:235 � 10�2[1℄2p�1=0� 10 ! 3d�2=0� 20 1 8:741 � 10�1 8:743 � 10�1[6℄10 9:665 � 10�2 9:665 � 10�2[4℄100 9:901 � 10�3 9:905 � 10�3[1℄3p�1=0� 12 ! 3d�1=0� 11 1 8:241 8:2408[6℄10 4:369 4.3688[2℄100 3:303 3.308[1℄3p�1=0� 12 ! 3d�2=0� 20 1 9:146 � 10�3 9:147 � 10�3[6℄10 2:465 � 10�4 2:464 � 10�4[4℄100 7:391 � 10�6 7:398 � 10�6[1℄2p�1=0� 10 ! 4d�1=0� 13 1 | 4:4502 � 10�4[6℄10 | 9:699 � 10�3[4℄100 | 1:7276 � 10�2[1℄3p�1=0� 12 ! 4d�1=0� 13 1 | 4:3792 � 10�2[6℄10 | 1:2318 � 10�3[4℄100 | 7:2918[1℄3d�2=0� 20 ! 4f�2=0� 21 1 | 1:7866[6℄10 | 4:3063 � 10�1[4℄100 | 1:2401 � 10�1[1℄4f�2=0� 21 ! 4d�2=0� 22 1 | 9:6021[6℄10 | 5:1284[4℄100 | 2:9267[1℄2p�1=0� 10 ! 4d�2=0� 22 1 | 1:649 � 10�4[6℄10 | 1:359 � 10�5[4℄100 | 7:496 � 10�6[1℄
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Figure 1. A Grotrian type diagram demostrating the alulated transitions (! = 1).Dipole strength were omputed by either Ruder et al (1994) (dotted lines) or us (dashedlines) or by both (ontinuous lines).
(i) It is known, that the omputation of a quadrati funtional where the matrixfuntions are solutions of selfadjoint problem is straightforward, see Kitoroage et al(1989). We showed now that a similar idea applies to quadrati funtionals for a setof non-selfadjoint ases in the frame of Bakhvalov fatorization. The fatorizationmethod in general has numerous advantages ompared to the other treatments.Among others, for getting the eigenvalues it does not require omputation of theeigenfuntions.(ii) The theoretial observation (i) allowed us to develop a mathematially onsistentmethod for omputing both the eigenvalues { that is the energy levels { and thequadrati funtionals { transition probabilities { for a non-separable quantummehanial problem, namely, the diamagneti Coulomb problem by the use of anon-trivial basis. This paper ompleted the mathematial studies of our previouswork BB96. From an other point of view, these two papers may be onsidered asan analysis of the problem in Liu{Starae basis in non-adiabati approximation.The pratial point:(iii) We have shown that for arbitrary transitions our alulations and the former onesare onsistent while we have used only a few hannels to reah the same auray.



10(iv) We have determined dipole strengths for some transitions for the �rst time.
AppendixComputation of Knmipq (z).In analogy with the proedure desribed in BB96 for getting funtionals I ipq, letKnmipq (z) = rnp (�; z)rmq (�; z)[knmilpq (�; z)� knmirpq (�; z)℄where, as in BB96, rts(�; z) = [htls (�; z) � htrs (�; z)℄�1=2 and (t; s) = (m; q) or (n; p),whiledknmiwpq (�; z)d� = [vnp (�; z) + vmq (�; z)℄knmiwpq (�; z) + sin �np (�; z) os �mq (�; z)�p(�)�q(�) s(i)1 (�)

knmilpq (�0; z) = �np0�mq0(12 + jnn3 j)(12 + jnm3 j)(1 + i+ jnn3 j+ jnm3 j)�2+i0 +O(�3+i0 )
knmirpq (�1; z) = ��np1�mq12!3 ��4+i1 +O(��5+i1 ):Equation for Knmiwpq oinides with (35) in BB96 if the proper hange of weight funtionis taken into aount. The di�erene is in vnp , vmq where di�erent nn3 , nm3 may appear.Above these values, the behaviour of the new weight funtions have an impat on theinitial values. All other quantities were de�ned and/or omputed in BB96.Implementation.The omputations of the omponents of dipole matrix elements (7) and (8) werearried out by a FORTRAN program running on a Sun workstation. Some subroutines ofstandard numerial methods were taken from Press et al (1992). The input parametersEm, En, Pm(z), Pn(z) and Knmipq (z) were provided by a slightly modi�ed version of theprogram desribed in BB96.We evaluated the funtionals in two subsequent steps. First, we solved the matrixdi�erential equations (34) and (41) for pairs Y nN(z), HnN(z) and Y mM(z), HmM(z),simultaneously. The fourth order Runge{Kutta proess was modi�ed to solve matrixequations with an adaptive stepsize ontrol. We integrated the equations from bothz1 and z1 to z. Determination of  is equivalent to �nding an arbitrary eigenvetorbelonging to the eigenvalue 1 of the algebrai problem (44). We have found  by the helpof a Jaobi algorithm whih provides approximation to the omplete set of eigenvalues.The eigenvalue losest to 1 was hosen and its eigenvetor was normalized by (45). Thedi�erene of the best eigenvalue from the value 1 indiated the auray of our , aswell.For the seond main step, we solved the matrix di�erential equation (48) forQnmw(z)from the zQ0 , zQ1 to z, where zQ0 and zQ1 were hosen so that Qnmw(z) be de�ned in the



11ommon part of the interval of de�nition of HnN(z) and HmM(z). In all neessary aseslinear interpolation was applied. When inverses appeared, the matries were invertedby a Cholesky-type deomposition.Errata to BB96.Here would like to indiate the error ouring in (37) in BB96. The orretexpressions there should be
kr1pq(�1) = ~l10�p1�q1��612�30 +O(��7)
kr2pq(�1) = ~l20�p1�q1��812�30 +O(��9)

A orretion also should be made on p. 6751. hr(�) � ��6P1j=0 h(j)r ��j, h(0)r = �21=(2�30).This orretion improves the behaviour of our method for smaller !.
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