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Abstract

Observing and storing the photons of the incoming radiation from
the Cosmos typically give a data cube defined by («,d,A). It is easy to
translate this data structure into the formalism of multivariate statistics.
A common problem in the multivariate statistics is whether the stochastic
variables described by observed properties are statistically independent or
can be described by a less number of hidden variables. This is the task
of factor analysis. Forming groups from cases having similar properties
according to the measures of similarities or the distances is the task of
cluster analysis. We demonstrated in three cases how these technics can be
used for separating physically independent cosmic components projected
onto the same celestial area by chance.

1. Introduction: Nature of astronomical information

The information we receive from Cosmos is predominantly in the form of elec-
tromagnetic radiation. An incoming plain wave can be characterized by the
following quantities:

n (direction), A(wavelength), polarization.

These physical quantities determine basically the possible observational pro-
grams:

Position = astrometry

Distribution of photons with A\ = spectroscopy

Number of photons => photometry

Polarization = polarimetry

Time of observation = variability

S oA W=

Distribution of photons in data space = statistical studies
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In the reality, however, not all these quantities can be measured simultane-
ously. Restriction is imposed by the existing instrumentation.

By observing and storing the photons of the incoming radiation typically we
get a data cube defined by (a,d,A). The measuring instrument has some finite
resolution in respect to the parameters of the incoming radiation. Consequently,
the data cube can be divided into cells of size of the resolution. The astronomical
objects can be characterized by isolated domains on the «, § plane. A real object
can be more extended than one pixel in this plane. Each pixel in the «,§ plane
can have a set of non-empty cells according to the different A values. A list of
non-empty pixels can be ordered into a matrix form having columns of properties
(a, d, and the set of As) and rows referring to the serial number of objects. This
structure is called the 'Data Matrix’ which is the input of many multivariate
statistical procedures.

Table 1: Structure of the Data Matrix: m means the number of properties and
n runs over the cases.

a1 0 A A2 0 Am
ay G A1 A - Aom
(77} 6n )\11 A12 R Anm

2. Brief summary of multivariate methods

2.1. Factor Analysis

A common problem in the multivariate statistics is whether the stochastic vari-
ables described by different properties are statistically independent or can be
described by a less number of physically important quantities behind the data
observed. The solution of this problem is the subject of the factor analysis.

Factor analysis assumes a linear relationship between the observed and the
background variables. The value (factor scores) and number of background
variables, along with the coefficients of the relationship (factor loadings) are
outputs of the analysis. The basic model of factor analysis can be written in
the following form:
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In the formula above X; means the observed variables, m is the number of
properties, p is the number of hidden factors (normally p < m), aj; denotes the
factor loadings, Fj, the factor scores, and u;-s are called individual factors. The
individual factors represent those parts of the observed variables which are not
explained by the common factors.

A common way to solve the factor problem uses the Principal Components
Analysis (PCA). PCA has many similarity with the factor analysis, however, its
basic idea is different. Factor analysis assumes that behind the observed ones
there are hidden variables, less in number, responsible for the correlation be-
tween the observed ones. The PCA looks for uncorrelated background variables
from which one obtains the observed variables by linear combination. The num-
ber of PCs is equal to those of the the observed variables. In order to compute
the PCs one has to solve the following eigenvalue problem:

Ra = Xa (2)

where R, a and A mean the correlation matrix of the observed variables, its
eigenvector and eigenvalue, respectively. The components of the a eigenvectors
give the coefficients of the linear relationship between the PCs and the observed
variables. The PC belonging to the biggest eigenvalue of R gives the most
significant contribution to the observed variables. The PCs can be ordered
according to the size of the eigenvalues. In most cases the default solution of
the factor problem is the PCA in the statistical software packages (e.g. BMDP,
SPSS). Normally, if the observed variables can be described by a less number
of background variables (the starting assumption of the factor model) there is
a small number of PCs having large eigenvalue and their linear combination
reproduce fairly well the observed quantities. The number of large eigenvalues
gives an idea on the number of the hidden factors. Keeping only those PCs
having large eigenvalues offers a solution for the factor model. This technique
has a very wide application in the different branches of observational sciences.
For the astronomical context see Murtagh & Heck (1987).

The factor model can be used successfully for separating cosmic structures
physically not related to each other but projected by chance on the same area
of the sky. We will return to the details later on when dealing with case studies.
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2.2. Cluster Analysis

Factor analysis is dealing with relationships between properties when describing
the mutual correlations of observed quantities by hidden background variables.
One may ask, however, for the relationship between cases. In order to study
the relationship between cases one have to introduce some measure of similarity.
Two cases are similar if their properties, the value of their observed quantities,
are close to each other.

"Similarity", or alternatively "distance" between [ and k cases, is a function
of two X ]l-, X J’“ set of observed quantities (j is running over the properties de-
scribing a given case). Conventionally, if [ = k, i. e. the two cases are identical,
the similarity a(X}, XF) = 1 and the distance d(X!, XF) = 0. The mutual
similarities or distances of cases form a similarity or distance matrix.

Forming groups from cases having similar properties according to the mea-
sures of similarities and the distances is the task of cluster analysis. There are
several methods for searching clusters in multivariate data. There is no room
here to enter into the details. For the astronomical context see again (Murtagh &
Heck, 1987). Typical application of this procedure is the recognition of celestial
areas with similar properties, based on multicolor observations. The procedure
of clustering in this case is a searching for pixels on the images taken in different
wavelengths but having similar intensities in the given colors.

In the following we try to demonstrate how these procedures are working in
real cases.

3. Case studies

3.1. Separation of the Zodiacal Light and Galactic Dust Emission

The IRAS mission covered the whole sky in four (12, 25, 60, 100 um) wave-
lengths. In particular, the 12 and 25 micron images were dominated by the
thermal emission of the Zodiacal Light (ZL) having a characteristic tempera-
ture around 250 K'h. The contamination of the Galactic Dust thermic radiation
by the ZL is quite serious close to the Ecliptic. Assuming that both radiation
are coming from optically thin media the observed infrared intensities are sums
of those coming from these two components. We may assume furthermore the
distribution of the intensity of thermal radiation on the sky coming from the
Galactic component has some similarities when observed at the given wave-
lengths and the same holds also for the ZL. Identifying the radiation coming
from these two physically distinct components with the hidden variables in Eq.
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Table 2: Results of factor analysis. There are two large eigen values indicating
the presence of two important factors. The last two columns of the table give
the aji, factor coefficients for Eq. (1). (Balazs et al., 1990)

eigenvalue cum. percent. | Variable 1. factor 2. factor
2.4818 62.0 Fis 0.9637 0.2089
1.3910 96.8 Foy 0.9917 0.0458
0.1003 99.3 Fyo 0.3625 0.9044
0.0268 100.0 Fioo 0.0409 0.9819

(1) and the incoming intensity with the observed ones the separation of the
ZL and the Galactic radiation can be translated into the general framework of
factor analysis.

In the case of the IRAS images the R correlation matrix has a size of 4 x 4
by cross correlating the four (12, 25, 60 and 100 um) images. We selected a field
of 15° x 15° (corresponding to 512 x 512 pixels) in Perseus close to the ecliptic,
containing the California Nebula, IC 348 and the Pleiades.

Solving Eq. (2) for this case we got the results summarized in Tab. 2.
One can infer from this table that there are two large eigenvalues indicating
the presence of two important factors. The last two columns of the table give
the aji, factor coefficients for Eq. (1). The first factor dominates the radiation
at 12 and 25 pym while the second one does it at 60 and 100 ym. Computing
the factor values from the observed data (the measured 12, 25, 60 and 100 pum
intensities) one gets the two images as shown in Fig. 1, along with the originals
(Balazs et al., 1991).

In order to define regions of similar physical properties we performed cluster
analysis in the {F}; F5} factor plane. These two factors define a two-dimensional
subspace in the four-dimensional color space. The 1-st factor almost fully ex-
plains the 25 micron flux, which is heavily dominated by the Zodiacal Light
and therefore represents its influence in different colors. The second factor, in
contrast, describes the effect of the radiation coming from the galactic dust
which produces most of the 100 micron emission. Performing cluster analysis
altogether 10 regions were defined, however this figure was arbitrary. The result
is given in Fig. 2. The basic features of this plot are the two ’fingers’ point-
ing upwards and nearly horizontally. These ’fingers’ may be identified with the
Zodiacal Light (dominating F}) and the galactic radiation (dominating F5).
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Figure 1: Input IRAS (12, 25,
60, and 100pm) images of the
factor analysis and the resulted
two factor pictures. The co-
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ordinates are measured in pix-
els. The objects are the Cali-
fornia Nebula, IC 348 and the
Pleiades, in descending order.
Note the strong trend in F; rep-
resenting the ZL while Fy dis-
plays the Galactic component
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Figure 2. Character plot of regions (clus-
ters) of similar properties in the {Fi;Fa}
factor plane. The identical symbols mean
physically similar regions. The basic
features of this plot are the two ’fingers’
pointing upwards and nearly horizontally.
These ’fingers’ may be identified with
the Zodiacal Light (dominating Factor [)
and the galactic radiation (dominating
Factor 2) (Balazs et al., 1990).

(Balazs et al., 1991).
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Figure 3. Distribution of duster members
in the {F25/F;F60/F} plane. The
coding of dusters is the same as in Fig.
2. The loci of dust low a = 1 radiations
of different temperatures are marked with
crosses. The numbers in parentheses are
the respective temperatures. Note that
the wedge-shaped distribution of symbols
representing real measurements points
towards dust temeratures of about 40K
and 200K (Balézs et al., 1990).
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The dust emission is basically thermal. We computed the total infrared
emission by adding the fluxes in the four bands:

F = Fis + Fys + Fgo + Flioo (3)

Assuming a dust emission law in the form of B(T)/\* where B(T) is the
black body (BB) radiation at T temperature, A the wavelength and o depends
on the physical properties of the emitting dust, we put @ = 1. However, recent
studies of the far infrared radiation of the ZL with the ISO satellite indicate
nearly BB radiation (Leinert et al., 2002), i.e @ = 0. The specification of «
influences the numerical results obtained, of course, but our goal is only to
demonstrate the link between the statistical procedure and the physical quan-
tities.

The F;/F ratios (i is 12, 25, 60 or 100) depend only on T if a region de-
termined by one characteristic temperature. Supposing the validity of the dust
emission law given above we computed the loci of such regions in Fig. 3, marked
with crosses the sources of different temperatures in the line of sight. As a con-
sequence, the real points in Fig. 3 are not on the theoretically computed line
but deviate from it according to the relative intensity of superimposed sources
of different temperatures. Keeping the same coding of sources as in Fig. 2 one
gets a wedge-shaped distribution of symbols representing real measurements
pointing towards dust temperatures of about 40 K and 200K. This distribution
can be obtained from the superimposed ZL and Galactic sources with these
characteristic temperatures.

4. Separation of HI components in the field of L1780

The next case study refers to L1780, a small dust cloud at a high galactic
latitude. By analyzing the profile of the HI 21 cm line it was difficult to separate
the object from the background since the velocity of the cloud was very close
to those of the background.

The cloud was observed with the 100 m telescope at Effelsberg at 209 posi-
tions in 82 channels. Formulating the problem of separation with the phraseol-
ogy of the multivariate statistical analysis we had 209 cases and 82 properties.

Performing PCA yielded 7 eigenvalues > 1 and they were accepted as signifi-
cant factors. In order to get clear-cut factor pattern we made Varimax rotation.
This procedure makes use of the fact that factors are determined only up to an
orthogonal transformation. Varimax rotation is an orthogonal transformation
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Figure 4: Results of factor analysis in L1780. The factor coefficients are displayed
as functions of the channels calibrated to the velocity in the line of sight. Beside
the strongest factor (FAC1), the main HI background component, those are displayed
which give excess emission in the field of L1780 (FAC2, FAC5, FAC6) (Toth et al.,
1993).

which maximizes the variance of the factor coefficients and usually gives a dom-
inant factor in each observed variables. This dominant factor makes easier to
identify the factors with real physical entities.

Inspecting the pictures obtained from the factor scores we found that FAC2,
FAC5 and FACG6 indicated excess HI radiation that could be associated with
L1780. On the contrary, FAC1, FAC3, FAC4 and FAC7 described the back-
ground. The contributions of the different factors to the channel maps are
displayed in Fig. 4. Summing up the factors related to the cloud gives the
amount of HI associated to L1780 (T6th et al., 1993).

Using the computed factors associated with the cloud we calculated the HI 21
cm spectra in some characteristic positions of L1780 along with the background
as seen in Fig. 5. Note that the difference of the HI spectra across the cloud
(i.e. the difference between he position a and c¢) indicates large scale internal
motions.
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Figure 5: Distribution of the dust in L1780 as obtained from the optical extinction
(AB). The HI spectra in the inserts give velocity profiles at some characteristic parts
of the cloud (a, c) and the background (b), respectively. Note that the difference of the
HI spectra across the cloud (i.e. the difference between the positions a and c indicates
large scale internal motions (Té6th et al., 1993).

5. Multivariate study of the Cepheus Bubble

The Cepheus Bubble was discovered in the IRAS maps (Kun et al., 1987) as
a ring about 10 deg. in diameter around Cep OB2 joining several known star
forming regions (5140, IC1396, S134, etc). The association of the ring with the
star forming regions with known distances (between 800-900 pc) enabled one to
estimate the true geometric diameter to be 140-160 pc. The dust responsible for
the radiation detected by IRAS, however, is only a tiny fraction of the total mass
which is mostly in the form of HI. In order to calculate the mass and internal
kinematics of the bubble one of the best choice was to use neutral hydrogen
observations. The integrated map of the HI channel intensities clearly showed
a ring coinciding with those in the IRAS maps (Fig. 6). We used 43 HI channel
maps of the region from the Dwingeloo HI sky survey (Burton & Hartman,
1994) in the [-38 km/s; +10 km/s] range.

Inspection of the channel maps (Fig. 5), starting at —38 km/s and mov-
ing towards positive radial velocities, revealed a ring structure starting at —30
km /s, becoming dominant in the [-18 km/s; —10 km/s] range and fading away
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umn density of the HI in
the region of the Cepheus
Bubble. A dashed circle
indicates the outer bound-
ary of the infrared ring
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afterwards (Fig. 8). In order to separate the HI associated with the Bubble
we performed factor analysis based on PCA which yielded 6 main components
(see Tab. 3). The factor coefficients, similarly to the case of L1780, could be
calibrated for radial velocity and are displayed in Fig. 9. The Figure clearly
shows that each factor dominates a certain velocity range. Usage of the images
made up from the factor scores (Fig. 10) enabled us to identify the factors in
terms of different physical entities of the HI distribution. The main body of
the bubble appeared in factor 2 whereas factor 3 and 5 are strong on the area
where factor 2 is weak. These factors can be interpreted as different slices of an
expanding shell. Identification of the factors with different physical entities of
the neutral hydrogen enabled us to separate the HI associated with the Bubble
and determine its mass and age (Abraham et al., 2000).

6. Conclusions

1. The nature of astronomical information is well suited for multivariate stud-
ies.

2. The typical procedures of multivariate methods (factor analysis, cluster
analysis) can be applied succesfully for studying different structures in the
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Figure 7: HI channel maps of the
Cepheus Bubble in the [-38 km/s; -
14 km/s] range. The ring structure
appears at -26 km/s and increases
in dominance at less negative veloc-
ities (Abraham et al., 2000).
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data cubes.

3. There is no straightforward way to assign physically meaningful objects to
the formal statistical results (actually this is one of the basic problems).

4. Special care is needed to separate "ghosts". In some cases physically
related structures can be splitted into different mathematical structures.

5. The best results can be expected for problems where the basic mathemati-
cal assumptions (e.g. linearity and orthogonality at PCA models) are also
physically meaningful.

6. A basic advantage is the existence of professional statistical packages
(SPSS, SAS, S-plus, etc.)
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Figure 8: HI channel maps of the
Cepheus Bubble in the [-14 km/s;
+10 km/s| range. The ring struc-
ture fades away towards less nega-

tive velocities and completely dis-
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Figure 9: Dependence of
the factor coefficients on
the radial velocity in the
Cepheus Bubble. Each
factor dominates a certain
range of radial velocities.
The 2nd strongest factor can
- { Dbe associated with the main
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Table 3: Results of the factor analysis on the HI data of the Cepheus Bubble. There
are 6 eigenvalues > 1 reproducing 95.4 % of the total variance of the data.

PC Eigenvalue. Pct. of Var. [%] Cum.Pct. [%]
1 20.41 47.5 45.5
2 7.80 18.3 65.8
3 5.87 13.7 79.5
4 3.41 7.9 874
5 1.87 4.3 91.8
6 1.56 3.6 95.4
7 0.66 1.5 96.7
8 0.52 1.2 98.1
43 0.00 0.00 100.0

\{' Factor 1
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Figure 10: Images made up from
the factor scores in the Bubble. The
2nd strongest factor gives the main
body of the ring. Images of factors
3 and 5 are strong on the area where
factor 2 is weak. These factors can

ol e be interpreted as different parts of
S70) AL an expanding shell (Abraham et al.,

108 106 104 102 100 98 96 108 106 104 102 100 98 96 2000
GALACTIC LONGITUDE [degree] )
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