COMMUNICATIONS MITTEILUNGEN FROM THE DER KONKOLY OBSERVATORY STERNWARTE OF THE DER UNGARISCHEN AKADEMIE HUNGARIAN ACADEMY OF SCIENCES DER WISSENSCHAFTEN BUDAPEST - SZABADSAGHEGY No. 85. L. G. BALAZS, M. PAPARO, I. TOTH DISTRIBUTION OF STARS OF SPECTRAL TYPES OF F7 AND EARLIER IN A FIELD AROUND NGC 7686 BUDAPEST, 1985 DISTRIBUTION OF STARS OF SPECTRAL TYPES OF F7 AND EARLIER IN A FIELD AROUND NGC 7686 ABSTRACT A statistical study was performed on 993 stars of spectral type F7 and earlier in 19.5 sq. deg. field centred on NGC 7686 down to a limiting magnitude of 12.5. The observational material was obtained with Konkoly Observatory's 60/90/180 cm Schmidt telescope. The stars were classified utilizing small scale spectra ( 580 A/mm at H gamma ) and photographic UBV colours were measured. The interstellar absorption in this area was determined to be A_v = 1.2 mag. and the space densities in the spectral groups of B8-A1, A2-A3, A4-A7, A8-F2 and F3-F7 were obtained using the matrix method of Dolan. Our empirical space distributions were compared with an exponential model, with Camm's models, with Bahcall's model and with that of Woolley and Stewart. The best fit was obtained by an isothermal model and this fitting enabled us to estimate the total mass density near the sun resulting 0.104 M_Sun/pc^3 using the B8-A1 group and 0.159 M_Sun/pc^3 using the A type stars. These figures do not differ from the observed total mass density on the one sigma significance level. INTRODUCTION The present work is a continuation of the combined spectral and multicolour investigation of stars of spectral types of F7 and earlier at intermediate galactic latitudes. In two previous papers (Balazs 1975, Paparo and Balazs 1982, hereafter referred to as Paper I and Paper II, respectively) we found further evidence to those reported in the literature (see references in Paper I), that the space distribution of A type stars is composed of two kinematically different subsystems resulting in an inflexion point on the log-density curve at about 200 pc above the galactic plane. On combining the results of other authors with our own measurements, we found (see Paper I) that the density ratio at z=0 of the two subsystems depends on spectral type and displays a jump at about A0. We interpreted this jump as a consequence of discontinuous star formation in the region surveyed (r<1000 pc from the Sun). It is thought that this jump might result from the passage of the density wave through the solar neighbourhood. The life times of these stars at which the jump appeared enabled us to estimate the period between two consecutive increases of star formation activity. It turned out to be of 1x10^8 years < tau < 6x10^8 years. Discontinuous star formation followed by dynamic evolution could account for the shape of the spatial distribution of the stars perpendicular to the galactic plane. Recent investigations (Wielen 1977, Wielen and Fuchs 1983, Villumsen 1984, Lacey 1984, Palous and Piskunov 1985) have confirmed the result of Spitzer and Schwarzschild (1953) that the dynamic evolution of stellar spatial and kinematic distributions could proceed fast enough to be significant during the period mentioned above. Thus, in addition to discontinuous star formation, this is an important phenomenon in interpreting the spatial distribution of stars having life times in the order of 10^8 years, i.e. of the A type stars. The significance of the spatial distribution of A type stars in studying star formation periods and dynamic evolution has been emphasized by Balazs (1977, 1984). It is important to prove that the space distribution of A type stars observed is really due to the processes mentioned above. To exclude the possibility that the observed characteristics represent a local phenomenon only, one should extend the investigations as far from the Sun as possible. Since the inflexion point appears at about 200 pc above the galactic plane, one has to make observations at intermediate or low galactic latitudes in order to extend the domain of investigations. This was an important motivation for selecting the galactic latitudes of our investigations in Papers I and II. The area presently surveyed has a somewhat lower latitude, of 11.63 degrees. OBSERVATIONAL MATERIAL We have investigated an area of 19.5 sq.deg. centred on l=109.52 deg. , b=11.63 deg. (alpha=23h 27.8m, delta=48deg 51'). The observations were carried out with the 60/90/180 cm Schmidt telescope of the mountain station of Konkoly Observatory. We obtained spectral types and UBV colours for 993 stars down to 12.5 photographic magnitude. For spectral classification we used three objective prism plates taken with a 5 deg. UBK7 (UV transmitting) prism that gives a dispersion of 580 A/mm at H gamma. The widening and the exposures were the same as in Papers I and II as were the criteria for spectral classification. The UBV photometry was based on five plates in U, two plates in B and four plates in V. The emulsion types, filters and exposure times were the same as previously. The relationship between the international system and the instrumental system gives the following equations: V = V_instr + 0.15(B-V)_instr - 0.14 B-V = 0.98(B-V)_instr + 0.01 U-B = 0.99(U-B)_instr - 0.13(B-V)_instr + 0.15 The plates were measured with Konkoly Observatory' s Cuffey-type iris photometer. We used the photoelectric sequence of Hoag (1961). The mean errors of the photographically determined colours were 0.10, 0.08, 0.07 in U, B and V, respectively. INTERSTELLAR REDDENING Adopting Allen's (1973) relation between the intrinsic colour index and spectral type we have derived the E(B-V), E(U-B) colour excesses using Allen's relation between the absolute magnitude and spectral type and computing the apparent distance modulus for each star. The stars were divided into seven groups according to their distance modulus: <7, 7-8, 8-9, 9-10, 10-11, 11-12 and >12 mag. and the mean distance modulus and the colour excesses for each subgroup were determined. The colour excesses determined in this way are plotted in Fig. 1 as a function of the distance modulus. According to Svolopoulos (1961) the distance modulus of the NGC 7686 cluster is 8.6 mag. and the mean reddening equals 0.17 mag. which is in good agreement with our value. Adopting E(B-V) from Fig. 1 and a ratio of total to selective absorption equal to 3.0, we have corrected the magnitudes for the absorption. Fig. 1 Colour excesses as functions of the apparent distance moduli of the stars. SPACE DISTRIBUTION OF STARS Preparing the input data for computation: After removing the effect of interstellar absorption from the apparent magnitudes of the stars we determined the space densities of the stars in our sample by solving the basic convolution equation of stellar statistics A(m) = integral from -infinity to +infinity D(y)f(m-y)dy where A(m), D(y), f(m-y) are the number of stars in a (m,m+dm) magnitude interval, the probability density of distance moduli and the luminosity function of stars, respectively. The stars were binned into subsamples to study the occasional dependence of space distribution on spectral type. The range of spectral types defining one subsample were chosen to ensure sufficient number of stars in each bin and taking into account the sharpness of classificational criteria. For this reason we have defined the five following bins: B8-A1, A2-A3, A4-A7, A8-F2, F3-F7. The distribution of stars against the V measured magnitude in the given subgroups is shown in Fig. 2a-f. Fig. 2a-c Distribution of stars against the V magnitude in different spectral ranges. Fig. 2d-e Distribution of stars against the V magnitude in different spectral ranges. We assigned the mean absolute magnitude to each bin using the distributions of spectral types within them. The only exception was the B8-A1 group because of the lack of reliable classificational criteria of these stars on our small scale spectra. To compute the mean absolute magnitudes of the corresponding subsamples we used the absolute magnitudes of Allen (1973) weighted with the distribution of spectral types observed. Fig. 2f Distribution of stars against the V magnitude in F3-F7 spectral range. To obtain the spatial densities in each spectral group defined above the convolution equation of stellar statistics was solved for them separately using the matrix method of Dolan (1974). The luminosity function inside the spectral group was assumed to be Gaussian with a mean absolute magnitude equalling the mean absolute magnitude assigned to the subsample. The standard deviation of the computed density values can be obtained from the formula yielding the densities. It is, however, obviously necessary to discuss in more detail the possible sources of bias inherent in this procedure. The first source of bias is caused by the method itself. To solve the convolution equation we supposed that the form of the luminosity function is Gaussian, which is in fact true if one deals with a given spectral type (McCuskey 1966). In our case, however, we binned the data in a certain spectral range and used an average absolute magnitude to compute the densities. The distribution of absolute magnitudes could deviate significantly from the Gaussian depending on the distribution of spectral types inside the spectral range defined as one bin. We tried to eliminate this effect by grouping the stars into different spectral bins and comparing the densities obtained. No significant changes were observed in the case of A type stars. Eventually we binned the A type stars into groups A2-A3, A4-A7 and A8-F2. In these groups the ranges of absolute magnitudes are 0.2, 0.5 and 0.5, respectively. These variations are small compared with the about 1 magnitude standard deviations of absolute magnitudes for these spectral types. In groups B8-A1 and F3-F7, however, these figures are 1 and 0.8, respectively and if the distribution of spectral types has a significant skewness the distribution of absolute magnitudes cannot be described with one Gaussian in these subsamples and on solving the convolution equation assuming Gaussian distribution the bias could be inserted into the densities obtained. Another possible source of bias comes from the uncertainties in the averaged absolute magnitude of stars assigned to the Gaussian-shaped luminosity function of a subsample. Its deviation from the true value causes changes in the distance scale and, consequently, in the spatial densities ( 0.5 mag. error in the absolute magnitudes results in a change of a factor of 2 in the densities). There is a significant difference between the calibrations made by different authors (e g. for A0 stars Alexander (1958) reported 0.14, Eggen (1962) 0.85, Perry (1969) 0.71 Hildich et al. (1983) 1.2). Because we had no reliable classificational criteria on our small scale spectra for B8-A1 stars we could not calculate the average absolute magnitude using the distribution of spectral types over this subsample. In view of this we assigned to this group an average absolute magnitude obtained from the spectral type distribution of stars near the Sun (data from Allen (1973)). The third and probably the most serious bias in our determination of space densities was the truncation of our samples. The convolution model assumes that the measured quantity (in our case the apparent magnitude of stars) is a sum of two probability variates, i.e. the absolute magnitude and the distance modulus. Due to the limiting magnitude of the telescope utilized for the observations, we can observe only a part of the convolved sample for which the convolutional model holds exactly. If the truncated sample is used in our computations the result will be seriously biased because the sample does not fulfill the basic assumption of a convolution equation: the sample observed is generated by a convolution process. In the next paragraph we outline a way to overcome this difficulty and to separate a part of the computed spatial density curve that is only slightly biased. Discussion of space densities: Applying Dolan's method to the subsamples described in the previous paragraph we obtained the spatial density curves displayed in Fig. 3a-e. A vertical dashed line indicates the estimated distance beyond which the densities are seriously biased due to the sample truncation. The estimation of this limit proceeded as follows: we visually inspected the distributions displayed in Fig. 2; this revealed that all the subsamples contain only a few stars fainter than 12.5 magnitude. This value was adopted as the plate limit. We then computed the distance modulus using the plate limit and the absolute magnitude corresponding to the fainter edge of the spectral range of the subsample in question. Next we corrected this distance modulus for the absorption, and the distance obtained in this way was adopted as the limit of the little-biased part of the density curves. Fig. 3a-b Space densities of stars in different spectral subgroups. (The dashed line indicates the plate limit.) Fig. 3c-e Space densities of stars in different spectral subgroups. (The dashed line indicates the plate limit.) The most important remark to be made after inspecting the density curves is to state that they do not display the inflexion feature described in the introductory paragraph of this paper. This inflexion feature was thought to be a consequence of the discontinuous star formation in the solar neighbourhood and of a subsequent dynamic evolution - as we pointed out in the introduction. Oort (1932), van Rhijn (1960), Woolley and Stewart (1967) accounted for the inflexion feature as being the superposition of subsystems having Gaussian (isothermal) velocity distribution of the velocity components perpendicular to the galactic plane but with different variances. The lack of inflexion on our curves may indicate that we could recognize only one isothermal component on the basis of our sample. This may be caused by the truncation due to the limiting magnitude of our observations. This means that the second isothermal component would have an influence beyond the bias-free part of the density curves. We shall discuss this assumption in more detail when comparing our empirical density curves with models. Assuming that the density curves of A type stars represent essentially the different portions of the same density distribution we can construct a composite curve from the density curves of the A2-A3, A4-A7, A8-F2 subsamples. For constructing this we selected a common distance range on the little-biased parts of the density curves. This turned out to be at 500 pc. We normalized each curve by equalling the densities at this distance by shifting the curves vertically in the (log density; distance) plane. The resulting curve obtained using this procedure is displayed in Fig. 4. Fig. 4 Composite space density curve of A type stars. We, did not use the B8-A1 and F3-F7 stars in this procedure for different reasons. The density curve of B8-A1 is flatter than those of the A type stars in our sample. The flatness of the density curve may possibly be accounted for by assuming an about 0.5 magnitude systematic error in the absolute magnitude we used for determining the density distribution of this spectral range. We have already stressed above that the possible source of this systematic error was the lack of reliable classificational criteria on our small scale spectra in this spectral range. We have excluded the F3-F7 stars from these calculations because they did not have reliable density values near 500 pc. Comparisons with models: a. Exponential distribution An exponential distribution is commonly used for describing the space distribution of stars perpendicular to the galactic plane. It was assumed also by Bahcall and Soneira (1980) for constructing their standard model of our Galaxy. It is so far the most detailed model of that type. Exponential models are represented by a straight line on the (log D, r) plane, where D is the spatial density and r is the distance in the line of sight. If our density plots of different spectral ranges are considered, it can be seen that the curves of B8-A1, A2-A3 and A8-F2 type stars can be represented by a straight line in the 300-1000, 500-1000 and in the 200-500 pc distance range, respectively. Extrapolations of the densities to the galactic plane, however, yield in the case of A2-A3 stars about four-times higher values than observed whereas in A8-F2 range they are close to the values derived from the data of nearby stars (Gliese, 1969). With the A4-A7 stars the exponential fit is rather poor: the extrapolated density in the galactic plane, however, is close to the value of Gliese. Except for the A2-A3 group where the scale height is about 50 pc the scale heights are comparable with those used by Bahcall and Soneira (1980). The extrapolated density values in the galactic plane utilized by different models are listed in Table 1. The corresponding scale heights are summarized in Table 2. The composite density curve made up from the A-type stars (Fig. 4) clearly shows a curvature and, correspondingly, an exponential model gives a poor fit to the data. The scale height of the best fitting exponential is about 70 pc in this case. Table 1 Extrapolated densities in the galactic plane utilized by different models (log D(0)+10) A2-A3 A4-A7 A8-F2 Gliese catalog 6.25 6.66 6.89 Isothermal model 6.35 6.50 6.67 Exponential model 6.95 6.75 6.83 Table 2 Scale heights (pc) of the best fitting exponential models A2-A3 A4-A7 A8-F2 Exponential model 50 66 90 Standard model 90 90 90 (Bahcall and Soneira 1980) b. Camm's models Camm (1950) studied self consistent solutions of the system consisting of a collisionless Boltzmann equation and the Poisson equation of the gravitational force field. He was looking for equilibrium configurations and found three particular solutions in the plane parallel case. His first solution corresponds to the isothermal case where the velocity dispersion is independent of the spatial coordinate. This result had actually already been found by Spitzer (1942). The basic idea behind these calculations is that the stars obey the same distribution in the phase space independently of their spectral type. Comparing the distribution of A type stars with, for example, that of F type stars, this assumption obviously does not hold. However, it is worth while to compare these models with our empirical density distributions. To facilitate comparison between the theoretical and empirical data we have displayed the empirical and model data on the (logD,logr) plane. The possible scale errors due to the systematic errors in absolute magnitudes appear as a shift along the log r axis. As to the isothermal model we shall return to its discussion later on in the context of the more advanced Bahcall model. Fig. 5 Comparison of space density distribution of B8-Al stars (a) and of the composite density curve of A type stars (b) with the model of Hill et al.(1979). ( o HHB model for A type stars, . HHB model for F type stars.) With regard to Camm's other two solutions, these models (Nos. II and III) were used more recently by Hill, addict and Barnes (1979) to explain the distributions of A and F type stars in the North Galactic Cap. The best fitting solution adopted by HHB was based on model No. II and it gives a reasonably good fit in the z < 200 pc distance range but deviates significantly from the empirical plots of both the A and F type stars beyond this distance. Fig. 5 shows a comparison between the B8-A1 stars (a) and our composite density curve of A type stars (b) with the HHB models after a suitable shift of the empirical curve in the log r direction to get the best fit with the model. As one can confirm from the figure the fit is satisfactory in case (a) and poorer in case (b) even in the distance range where the models give an excellent fit to the HHB data. As we shall discuss later on, our data can be fitted quite well by an isothermal model and the discrepancy between our points and those of HHB might be accounted for by a systematic error inherent in deriving the space densities. One probable source of such a systematic error is the inaccurate deconvolution when determining the space densities from the magnitude data. c. Bahcall's model Bahcall attempted to find a self-consistent solution of the collisionless Boltzmann equation - Poisson equation pair assuming that the disc density can be written in the form of a sum of different isothermal components and a term representing the halo mass density. He made detailed calculations in the isothermal case. We have compared his model with our data in Fig. 6 for B8-A1 stars (a) and for the composite distribution of our A type stars sample (b). Fig. 6 Comparisons of empirical space density curves with the Bahcall's model (1984): a): B8-A1 b): composite density curve of A type stars. To get the closest fit we shifted the empirical plots along the log r axis corresponding to 1.45 and 1.8 times increase of the scales in the case of B8-A1 group and the composite curve of A type stars, respectively. The scale differences might be accounted for not by the systematic errors of absolute magnitudes we used to derive the corresponding space densities but rather by the differences in the velocity dispersions assigned to the best fitting isothermal distribution for A and F type stars. The latter was used to fit the Bahcall model. The 1.24 times larger scale of B8-A1 stars in relation to the A type spectral group can be explained by a 0.5 magnitude systematic error in absolute magnitudes. The possibility of such an error was mentioned in paragraph 3.2 when we discussed the space densities of the sample stars. Summarizing what has been said, our view is that the space distribution of B8-A1 and A type stars in our sample can be represented very well by Bahcall's isothermal model after appropriate scale transformation. d. Two component model of Woolley and Stewart Woolley and Stewart (1967) worked out a model superposing two isothermal components having a ratio of the velocity dispersions of about 1:2. The aim of their model was to explain the inflexion feature inherent on the space density curve of A type stars perpendicular to the galactic plane. We have achieved the best fitting with the WS model by shifting our experimental density plots in the (log D,log r) plane by 0.04 and 0.13 along the log r direction in the case of B8-A1 and A type stars, respectively ( see Fig. 7a and b ). Below the inflexion the space distribution is dominated by one isothermal component and this part coincides well with the plots derived from our observations. The deviation from a simple isothermal model becomes significant beyond the limit of completeness of our sample so this limit does not enable us to study the possible presence of a secondary isothermal component in our data. Fig. 7 Fitting the empirical space densities by the model of Woolley and Stewart (1967). a): B8-A1 stars b): A type stars. The model tends to deviate from the empirical curve beyond the limit of completeness of the empirical data. (We achieved the best fit with the WS model by shifting our experimental density plots by 0.04 and 0.13 along the log r direction for a) and b), respectively.) Mass density in the solar neighbourhood: The total mass density could be determined knowing the gravitational potential by using the Poisson equation (see e.g. Oort 1965). In the case of isothermal distribution the logarithm of space density is proportional to the gravitational potential if we consider the plane parallel case: log D(z) - log D(0) = - (phi(z) / (sigma_w)^2) where D(z), phi(z), (sigma_w)^2 are the spatial density, gravitational potential and variance of velocities perpendicular to the galactic plane, respectively. Expanding phi(z) into Taylor series and supposing that phi(z) is symmetric to the galactic plane we have: phi(z)~~ phi(0) + (phi''(0)/2)z^2 + ... The log density could, therefore, be fitted by a simple parabola if z is sufficiently small for the higher order terms in this expansion to be neglected. Since the total mass density is connected with the potential by the Poisson equation the coefficient of the second order term in the expression of the log density is given by a = 2 pi G rho(0)/sigma_w^2 where G, rho(0) are the gravitational constant and the total mass density in the plane of the Galaxy, respectively. Comparing our density curves with a suitably chosen parabola we can get an excellent fit to our B8-A1 and composite A type stars density curve (see Fig. 8). We may conclude, therefore, that the parabola approximation is satisfactory in the z<200 pc range. Adopting sigma_w =7.3+-2 km/sec (Hill et al. 1979) we get rho(0)=0.104 M_Sun/pc^3 and rho(0)=0.159 M_Sun/pc^3 in the case of B8-A1 and A type stars, respectively. Nevertheless, it is necessary to remark that the mass density derived from the B8-A1 sample is probably underestimated because of the possible scaling error of 1.24 (as pointed out in 3.2 paragraph). The total mass density of matter observed in the solar neighbourhood has an estimated value of rho(0)=0.108 M_Sun/pc^3 (Hill et al.1979). Taking into account the 2 km/sec standard deviation of velocity dispersion and computing rho(0) with sigma_w=5.3 km/sec instead of 7.3 km/sec we get a mass density of rho(0)=0.084 M_Sun/pc^3. Thus the observed mass density is within the confidence interval of the derived mass density and there is no significant difference between the observed and computed local mass density. There are several papers, however, pointing towards the value of rho(0)=0.15 M_Sun/pc^3 thereby indicating the presence of a considerable amount of unseen matter near the Sun (Oort 1965, Hill et al. 1979, Bahcall 1984). Moreover the applicability of A type stars for determining the local mass density is also criticized (King 1983, Bahcall 1984) on the basis that they do not display a fully relaxed subsystem. We think, however, that the excellent fit given by a simple isothermal model to our empirical density curves of A type stars in our sample gives some support for the reliability of the procedure we applied to obtain the total mass density in our galactic neighbourhood. Fig. 8 Parabola approximation of the empirical density curves: a): B8-A1 stars b): A type stars. The estimated values of the total local galactic mass density are 0.105 M_Sun/pc^3 and 0.159 M_Sun/pc^3 for a) and b), respectively. CONCLUSIONS We have studied the space distribution of interstellar matter and stars earlier than F7 in a 19.5 sq. degrees field centred on NGC 7686. Using the spectral and colour data, we derived the interstellar absorption as A_v =1.2 mag. After removing the effect of absorption we computed the spatial densities in the subsamples given by the spectral ranges of B8-A1, A2-A3, A4-A7, A8-F2, F3-F7. Normalizing the densities to the density at 500 pc we made a composite density curve for the A type stars. The most significant remark to be made after inspecting the shape of the density curves obtained is that these curves do not display an inflexion indicating the possible presence of kinematically different subsystems as was found in our previous works and in the references listed therein. We have compared our density curves with an exponential density distribution, with Camm's models, with Bahcall's model and with the two component model of Woolley and Stewart. We have found that the best fit is given by an isothermal model. Comparison with the WS model (yielding an inflexion by superposing two kinematically different isothermal components) indicated that the inflexion lies beyond the limit of completeness of our sample. If the magnitude limit were to be extended by at least 1 mag. this could clear up whether this is in fact the case. The best fitting isothermal model enabled us to compute the total mass density of matter near the Sun. We have obtained a value of 0.104 M_Sun/pc^3 for the B8-A1 group, and 0.159 M_Sun/pc^3 for the A type stars in our sample. The density obtained from the B8-A1 stars is probably underestimated because of a possible scale error of a factor of 1.24 due to the absolute magnitudes we used for this spectral group. Taking into account the uncertainties of velocity dispersions used in our computations the 0.108 M_Sun/pc^3 observed mass density does not differ on the one sigma level from the computed one. Results of other authors, however, point to a value of about 0.15 M_Sun/pc^3 indicating the presence of a considerable amount of dark matter near the Sun. ACKNOWLEDGEMENTS We are indebted to Dr. B. Szeidl for his advice on eliminating systematic errors from our colour data. The assistance of Mrs. I. Kalman in measuring the photographic UBV data is also acknowledged. Budapest, December 16, 1985. REFERENCES Alexander, J.B., 1958, MNRAS, 118. 161. Allen, C.W., 1973, Astrophysical Quantities 3rd. ed., Athlone Press London. Bahcall, J.N., Soneira, R.M., 1980, Ap.J.Suppl. 44. 77. Bahcall, J.N., 1984, Ap.J. 276. 169. Balazs, L.G., 1975, Mitt. Sternwarte Ung.Ak.Wiss. No. 68.(Paper I) Balazs, L.G., 1977, The Cosmogonical Significance of the z Distribution of Stars in "Chemical and Dynamical Evolution of our Galaxy" IAU Coll. No. 45. p.271. Balazs, L.G., 1984, Statistics of A-Type Stars as Possible Indicator of Star Formation in "Astronomy with Schmidt-Type Telescopes" ed. M. Capaccioli, D.Reidel Publ.Co. p. 269. Camm, G.L., 1950, MNRAS 110. 305. Dolan, J.F., 1974, Astron. and Astrophys. 35. 5. Eggen, O.J., 1962, R.Obs.Bull. No. 42. Gliese, W., 1969, Catalog of Nearby Stars (Veroff.Astr. Rechen-Inst. Heidelberg, Nr. 22.) Hildich, R.W., Hill, G., Barnes, J.V., 1983, MNRAS 204. 241. Hill, G. Hildich, R.W., Barnes, J.V., 1979, MNRAS 186. 813. Hoag, A.A., 1961, Publ. US Nav. Obs. No. 17. 347. King, I.R., 1983, On the Analysis of Motions Perpendicular to the Galactic Plane in "Kinematics, Dynamics and Structure of the Milky Way" ed. W.L.H. Shuter, D. Reidel Publ.Co. p. 53. Lacey, S.C., 1984, MNRAS 208. 687. McCuskey, S.W., 1966, Vistas in Astron. 7. 141. Oort, J.H., 1932, BAN 6. 249. Oort, J.H., 1965, Stellar Dynamics in "Galactic Structure", ed. A. Blaauw and M. Schmidt, Univ. Chicago Press, p. 455. Palous, J., Piskunov, A.E., 1985, Astron. and Astrophys. 118. 306. Paparo, M., Balazs, L.G., 1982, Mitt. Sternwarte Ung.Ak.Wiss. No. 82. (Paper II) Perry, C.L., 1969, Astron.J. 74. 139. Spitzer, L., 1942, Ap.J. 95. 239. Spitzer, L., Schwarzschild, M., 1953, Ap.J. 118. 306. Svolopoulos, S.N., 1961, Ap.J. 134. 612. van Rhijn, P.J., 1960, Publ. Kapteyn Astr.Lab. Groningen No. 61. Villumsen, J.V., 1984, preprint (submitted to the Ap.J.) Wielen, R., 1977, Astron. and Astrophys. 60. 263. Wielen, R., Fuchs, B., 1983, Velocity Distribution of Stars and Relaxation in the Galactic Disk in "Kinematics and Structure of the Milky Way" ed. W.L.H. Shuter, D. Reidel Publ.Co. p. 81. Woolley, R., Stewart, J.M., 1967, MNRAS 136. 329. Finding chart of the survey stars Finding chart of the survey stars Finding chart of the survey stars Finding chart of the survey stars TABLE Spectra and UBV data of survey stars No. Sp. V B-V U-B No. Sp. V B-V U-B 1 A9 9.58 0.51 0.19 51 A6 12.91 0.40 0.27 2 F7 10.39 0.84 0.16 52 F7 10.45 0.62 0.10 3 A2 10.77 0.34 -0.06 53 A0 12.47 0.36 0.03 4 A9 11.29 0.38 0.24 54 F6 11.63 0.47 0.11 5 A8 12.43 0.66 -0.02 55 F6 10.52 0.71 0.11 6 A2 12.12 0.37 0.13 56 F7 10.40 0.72 0.03 7 A0 9.38 0.30 -0.06 57 A2 10.24 0.28 0.30 8 A1 11.18 0.40 0.23 58 A2 10.00 0.30 0.18 9 F4 10.91 0.47 0.07 59 F7 11.09 0.50 0.12 10 F2 10.49 0.52 0.11 60 F6 11.57 0.58 0.18 11 F7 11.29 0.64 0.20 61 A1 11.58 0.26 0.12 12 F7 9.91 0.67 -0.02 62 F7 12.04 0.80 0.03 13 A7 11.75 0.51 0.33 63 F6 11.54 0.76 0.08 14 F7 11.16 0.73 0.00 64 B8 12.38 0.37 0.28 15 F0 11.80 0.60 -0.05 65 A1 11.15 0.13 -0.09 16 F7 11.28 0.79 0.09 66 A0 11.83 0.30 0.04 17 F7 11.84 0.90 0.13 67 F7 10.95 0.72 0.14 18 F7 11.42 0.69 -0.19 68 F7 11.85 0.64 0.19 19 F5 11.82 0.65 0.12 69 A1 9.98 0.17 0.13 20 F7 10.51 0.79 -0.11 70 F7 12.14 0.75 -0.04 21 F2 11.78 0.59 0.05 71 F5 11.37 0.53 0.14 22 A4 11.77 0.51 0.27 72 F7 11.08 0.68 0.16 23 A4 12.31 0.53 0.23 73 F0: 11.56 0.57 0.04 24 F7 11.59 0.81 0.05 74 F7 11.21 0.56 0.09 25 A1 12.22 0.56 0.12 75 A3 12.16 0.49 0.20 26 A1 8.97 0.32 0.19 76 F6 11.36 0.57 0.13 27 A7 11.77 0.59 0.00 77 F7 11.91 0.72 0.10 28 F7 11.15 0.92 0.25 78 A5 9.52 0.33 0.32 29 A2 10.60 0.31 0.08 79 F3 11.71 0.49 0.22 30 F7 11.92 0.77 0.01 80 F7 11.05 0.56 0.21 31 A2 11.22 0.59 0.06 81 F0 10.92 0.35 0.25 32 A5 10.82 0.46 0.18 82 F3 10.15 0.34 0.19 33 A4 11.76 0.48 0.32 83 F5 11.76 0.42 0.11 34 F2 10.84 0.49 0.22 84 F3 11.75 0.90 0.28 35 F6 11.26 0.61 0.22 85 F1 11.92 0.78 0.09 36 A5 10.83 0.51 0.21 86 A5 8.65 0.20 0.23 37 F7 11.74 0.61 0.26 87 F6 11.44 0.59 0.01 38 A0 11.58 0.36 0.19 88 F4 10.89 0.49 0.14 39 F0 11.32 0.40 0.33 89 F7 11.68 0.62 0.18 40 A3 10.46 0.32 0.45 90 A0 10.26 0.18 -0.04 41 A1 11.35 0.37 0.26 91 F4 12.22 0.66 -0.02 42 A5 11.86 0.38 0.37 92 F6 11.89 0.62 -0.08 43 F7 10.10 0.48 0.21 93 F7 12.54 0.44 0.05 44 A1 11.36 0.41 0.24 94 F6 10.67 0.61 -0.03 45 A0 12.26 0.36 0.19 95 A6 8.99 0.34 0.21 46 F7 11.17 0.64 0.15 96 F7 11.09 0.70 -0.12 47 A8 12.12 0.49 0.20 97 F7 11.72 0.67 -0.05 48 F5 11.04 0.47 0.27 98 F7 11.72 0.66 -0.09 49 F6 11.63 0.52 0.14 99 F7 11.68 0.71 -0.09 50 A3 12.09 0.29 0.36 100 F5 10.38 0.56 0.07 TABLE No. Sp. V B-V U-B No. Sp. V B-V U-B 101 A7 9.40 0.34 0.09 151 F6 10.75 0.50 -0.02 102 F7 11.86 0.75 -0.09 152 F6 10.91 0.66 -0.10 103 A3 11.79 0.42 0.17 153 F5 11.33 0.55 0.17 104 F7 12.02 0.60 -0.07 154 A2 11.01 0.20 0.03 105 F4 10.86 0.45 0.05 155 F0 12.27 0.30 0.12 106 A0 12.37 0.46 -0.02 156 F5 11.43 0.56 0.09 107 A1 10.52 0.19 -0.05 157 A5 10.25 0.38 0.11 108 F1: 10.49 0.34 0.16 158 F0 11.86 0.55 0.16 109 F7 11.45 0.78 0.02 159 A1 11.12 0.23 -0.09 110 A0 9.14 0.11 -0.04 160 F6 10.29 0.64 -0.17 111 A5: 11.86 0.38 0.32 161 F7 11.68 0.65 0.03 112 F6 10.34 0.54 -0.01 162 F5 11.63 0.67 -0.03 113 F4 11.54 0.64 -0.16 163 F7 11.67 0.69 -0.11 114 A1 11.61 0.30 0.20 164 F2: 11.11 0.52 0.15 115 A1 10.29 0.12 0.02 165 F7 11.68 0.78 0.05 116 A2 9.59 0.31 0.14 166 F7 12.06 0.64 0.00 117 F7 12.01 0.54 0.05 167 B8 8.45 0.04 -0.11 118 A7 12.37 0.34 0.06 168 F7 10.90 0.69 0.09 119 F6 9.94 0.56 0.04 169 A0 11.59 0.26 0.17 120 A0 11.68 0.30 0.12 170 F6 9.43 0.64 -0.06 121 A0 11.87 0.24 0.01 171 F7 11.00 0.53 0.12 122 F7 11.05 0.66 0.00 172 F5 10.96 0.63 0.05 123 F7 11.69 0.63 -0.26 173 F7 11.27 0.72 0.15 124 F5 11.91 0.61 -0.03 174 A1 11.42 0.44 0.24 125 A0 12.07 0.40 0.14 175 F7 10.90 0.68 0.28 126 A0 12.74 0.16 -0.42 176 A4: 11.39 0.26 0.25 127 F0: 10.43 0.52 -0.01 177 F1 10.29 0.52 0.57 128 A1 11.90 0.32 -0.09 178 F7 10.94 0.63 0.31 129 A6: 11.12 0.46 0.07 179 A8: 11.06 0.51 0.45 130 A0 12.34 0.25 0.09 180 A1 10.24 0.64 0.09 131 F6 11.57 0.57 -0.09 181 F7 11.06 0.78 0.24 132 F6 11.67 0.73 -0.04 182 A0 12.01 0.36 0.79 133 F7 11.59 0.71 -0.17 183 F7 11.26 1.15 -0.28 134 F6 11.52 0.68 0.01 184 A7 10.30 0.59 0.34 135 A0 8.86 0.01 -0.12 185 A1 11.09 0.42 0.61 136 A0 11.10 0.39 -0.04 186 F7 11.45 0.96 -0.07 137 A4 12.06 0.41 0.18 187 F1 9.51 0.57 0.33 138 F7 11.92 0.70 -0.03 188 A3 11.31 0.72 0.29 139 A6 12.09 0.41 0.18 189 F7 10.39 0.74 0.34 140 B9 9.28 0.04 -0.16 190 B7 8.83 0.24 0.04 141 F0 11.79 0.60 -0.01 191 F7 10.91 1.09 0.15 142 F7 11.53 0.71 -0.07 192 F3 11.30 0.71 0.20 143 A2 11.69 0.30 0.26 193 F3 11.25 0.81 0.19 144 A8 11.70 0.45 0.09 194 F4 10.68 0.80 -0.05 145 F7 11.48 0.79 0.26 195 A1 11.20 0.61 0.22 146 F4 11.39 0.60 -0.06 196 A0 11.93 0.47 0.24 147 F7 10.83 0.90 0.31 197 A3 10.24 0.31 0.17 148 F6 10.60 0.57 0.08 198 A3 10.52 0.26 0.26 149 A4 11.30 0.32 0.17 199 F6 10.88 0.61 0.11 150 F4 11.05 0.48 0.04 200 A3 10.32 0.34 0.09 TABLE No. Sp. V B-V U-B No. Sp. V B-V U-B 201 F4 10.18 0.68 -0.06 251 F7 10.55 0.71 0.01 202 A0 11.59 0.56 0.15 252 F6 10.45 0.61 -0.10 203 B6 7.93 -0.05 -0.23 253 F5 11.84 0.88 -0.02 204 F0 11.31 0.59 0.11 254 F2 11.65 0.65 0.11 205 A1 9.83 0.28 0.11 255 F4 11.17 0.71 0.32 206 A2 10.86 0.32 0.03 256 F7 11.21 0.75 0.12 207 F1: 11.41 0.51 -0.04 257 F7 11.51 0.71 -0.10 208 F7 10.40 0.88 -0.08 258 A3 12.16 0.36 0.06 209 A5 11.80 0.45 0.05 259 A2 11.07 0.43 0.13 210 A3 11.12 0.24 0.21 260 F7 11.53 0.62 0.01 211 F3 11.63 0.37 0.09 261 F5 9.28 0.46 -0.08 212 A2 11.88 0.55 -0.02 262 F5 10.94 0.55 -0.04 213 A1 10.48 0.24 -0.01 263 F0 10.94 0.41 0.07 214 B7 8.39 0.05 -0.06 264 A5 9.29 0.31 0.14 215 F5 10.87 0.57 0.18 265 A0 12.56 0.09 -0.06 216 F7: 11.79 0.72 0.02 266 A0 12.32 0.25 -0.12 217 F6 11.87 0.71 0.02 267 F7 10.87 0.73 0.03 218 F5 11.61 0.49 0.08 268 F7 11.47 0.60 0.01 219 A8: 11.48 0.55 -0.16 269 A0 10.79 0.26 -0.08 220 A0 8.66 0.17 -0.02 270 F4 11.49 0.74 -0.04 221 F7 10.64 0.67 -0.15 271 A8 11.91 0.45 0.08 222 F0: 10.54 0.45 0.00 272 F7 11.19 0.25 0.42 223 F7 11.49 0.65 -0.03 273 F4 11.97 0.66 -0.10 224 F7 12.01 0.57 -0.12 274 F7 11.48 0.67 -0.17 225 F6 11.35 0.52 0.08 275 F5 11.09 0.54 0.13 226 F3 11.01 0.56 -0.08 276 F7 11.22 0.62 -0.09 227 F5 10.14 0.58 -0.15 277 A6 10.72 0.28 0.11 228 A2 10.25 0.41 0.14 278 A9 11.26 0.53 0.14 229 A1 12.33 0.33 0.05 279 A0 10.31 0.52 -0.03 230 A2 9.40 0.32 0.13 280 A2 11.32 0.44 0.16 231 F7 11.41 0.78 -0.06 281 F7 11.57 0.71 -0.19 232 A6: 11.37 0.38 0.08 282 F7 11.41 0.74 -0.10 233 F5 10.68 0.48 -0.08 283 F7 11.25 0.59 0.13 234 F7 12.61 0.64 0.00 284 A7 11.11 0.48 0.21 235 F5 11.40 0.46 0.14 285 F6 10.49 0.68 -0.09 236 F7 10.56 0.63 0.01 286 A3 11.59 0.27 0.15 237 F2 8.95 0.47 0.18 287 A0 11.98 0.35 0.26 238 A1 9.46 0.12 -0.11 288 F7 10.55 0.78 0.13 239 A1 11.81 0.31 0.04 289 A1 10.53 0.54 0.18 240 A4 11.26 0.35 0.15 290 F7 11.18 0.78 0.20 241 F7 10.61 0.75 0.08 291 A0 10.27 0.41 0.20 242 F7 11.74 0.63 0.05 292 A2 11.06 0.66 0.06 243 F7 11.70 1.04 -0.05 293 F7 9.95 0.76 0.24 244 F7 10.77 0.65 -0.07 294 F6 10.95 0.90 0.04 245 A1 11.56 0.16 0.18 295 F7 10.18 1.01 0.02 246 A1 10.44 0.19 0.04 296 F7 10.68 0.79 0.27 247 F7 11.60 0.72 -0.02 297 A0 9.94 0.52 0.02 248 A2 11.84 0.35 0.08 298 A2 10.48 0.46 0.38 249 F5 10.28 0.51 0.28 299 A3 10.03 0.64 -0.06 250 A6 10.22 0.32 0.19 300 A2: 10.58 0.42 0.34 TABLE No. Sp. V B-V U-B No. Sp. V B-V U-B 301 F5 8.87 0.70 0.24 351 F7 11.95 0.40 0.10 302 A3 10.61 0.37 0.59 352 F7 11.72 0.60 -0.01 303 F7 10.47 0.51 0.49 353 F5 10.31 0.44 0.12 304 F7 11.16 0.58 0.69 354 F5 10.72 0.52 -0.09 305 F7 11.47 0.76 0.45 355 A7 11.08 0.26 0.09 306 F7 11.18 0.55 0.49 356 A6 10.98 0.26 0.19 307 F7 11.38 0.87 -0.11 357 F6 11.17 0.42 0.14 308 A0 11.32 -0.09 -0.14 358 F7 11.26 0.55 0.09 309 A0 8.91 0.08 0.39 359 F7 10.11 0.60 0.05 310 F6 10.12 0.41 0.57 360 F7 11.89 0.62 -0.22 311 F7 9.82 0.82 0.04 361 F7 12.23 0.82 -0.05 312 F0 11.39 0.55 0.20 362 B9 9.53 0.06 -0.04 313 F6 10.45 0.67 -0.13 363 A0 9.93 0.26 0.03 314 F7 11.41 0.65 0.12 364 A0 10.35 0.15 0.29 315 A8: 10.83 0.38 0.08 365 A8 11.18 0.38 0.10 316 B8 8.62 0.08 -0.13 366 F7 11.65 0.40 0.02 317 A1 11.01 0.28 0.03 367 F5 11.56 0.55 0.09 318 F6 11.22 0.62 0.17 368 F6 10.30 0.43 0.06 319 F7 11.97 0.69 -0.06 369 F7 11.29 0.43 0.16 320 F7 11.36 0.64 -0.28 370 A6 11.48 0.49 0.10 321 F3 11.46 0.57 0.08 371 A7 9.95 0.29 0.05 322 F6 10.51 0.60 -0.04 372 A2 10.21 0.48 -0.02 323 A2 10.77 0.48 0.08 373 A5 11.73 0.30 0.11 324 A0 10.29 0.34 -0.21 374 A0 12.58 0.30 0.12 325 A0 12.13 0.18 0.02 375 F4 11.98 0.44 0.01 326 F7 11.86 0.80 -0.08 376 A7 12.00 0.42 0.14 327 A4 12.06 0.44 0.15 377 A4 11.52 0.23 0.27 328 F7 10.81 0.58 0.05 378 A3: 12.52 0.18 -0.01 329 A4 11.03 0.34 0.04 379 A1 12.25 0.34 0.06 330 F2 11.61 0.57 0.02 380 F7 12.13 0.49 -0.20 331 F4 10.91 0.40 0.00 381 F7 12.19 0.65 0.37 332 F0 10.49 0.36 0.11 382 F7 11.27 0.58 -0.17 333 F7 11.44 0.46 0.00 383 A2 10.27 0.36 -0.06 334 F7 11.27 0.64 -0.18 384 F6 12.02 0.50 -0.07 335 A0 11.01 0.32 0.04 385 F6 10.07 0.54 0.01 336 F7 11.43 0.54 0.06 386 F6 11.41 0.50 0.10 337 B6 8.75 -0.06 -0.25 387 F4 10.74 0.49 0.09 338 F7 11.23 0.47 0.14 388 F5 11.14 0.45 0.17 339 F7 11.49 0.63 0.11 389 F5 9.10 0.39 -0.17 340 A0 11.39 0.25 0.10 390 A4: 10.46 0.10 0.15 341 F7 11.36 0.51 0.05 391 A5 11.77 0.16 0.17 342 F7 10.62 0.57 0.00 392 A0 9.17 -0.10 -0.20 343 A9 10.44 0.41 0.06 393 F7 11.31 0.49 -0.01 344 F7 9.83 0.74 0.00 394 F7 9.54 0.55 -0.04 345 A3 10.70 0.29 0.19 395 A4 9.56 0.91 0.46 346 A0 12.03 0.33 -0.07 396 A5: 12.10 0.13 0.16 347 F7 9.60 0.57 -0.05 397 F7 11.59 0.55 -0.16 348 A9 9.79 0.26 0.24 398 A9 12.17 0.49 -0.04 349 A4 11.07 0.14 0.20 399 A7: 12.16 0.46 -0.15 350 F7 11.97 0.72 0.23 400 F5 11.48 0.65 -0.13 TABLE No. Sp. V B-V U-B No. Sp. V B-V U-B 401 A2 11.76 0.29 0.19 451 A8 10.19 0.40 0.34 402 F4 9.45 0.50 -0.13 452 A0 11.35 -0.03 0.57 403 F4 11.45 0.51 -0.14 453 A0: 11.19 0.50 0.29 404 A1 10.58 0.13 -0.08 454 A4: 11.40 0.47 0.28 405 F7 10.41 0.53 -0.06 455 A0: 11.34 0.62 0.35 406 F7 10.95 0.61 -0.23 456 F7 11.24 0.50 0.23 407 F4 11.70 0.31 0.03 457 A0 11.45 0.12 0.46 408 F5 10.76 0.58 -0.08 458 A0 11.61 0.22 0.41 409 F5 11.99 0.57 0.25 459 F7 11.57 0.55 0.36 410 F5 9.86 0.63 -0.20 460 F7 11.08 0.40 0.20 411 A7 12.66 0.48 -0.16 461 F5 10.44 0.48 0.08 412 A7 10.86 0.33 0.05 462 A3: 11.59 0.15 0.18 413 F7 11.61 0.68 -0.16 463 F5 11.34 0.56 0.03 414 F6 10.13 0.57 -0.10 464 F1 10.93 0.36 -0.09 415 A1 9.35 0.05 -0.51 465 A0 10.69 0.14 -0.03 416 A0 10.78 0.26 0.00 466 A1 12.10 0.28 0.11 417 F7 11.52 0.61 -0.14 467 A8 11.27 0.39 0.18 418 F7 12.22 0.44 -0.01 468 F6 10.34 0.46 -0.01 419 F7 11.94 0.59 -0.20 469 A1 11.46 0.21 0.05 420 A3 12.23 0.38 0.00 470 F7 12.05 0.48 0.03 421 F7 11.41 0.63 -0.28 471 F7 10.67 0.47 0.14 422 F6 11.54 0.40 -0.02 472 F7 11.79 0.63 -0.08 423 F5 11.10 0.54 -0.19 473 F7 11.97 0.69 -0.03 424 A2 10.12 0.09 -0.14 474 B5 7.17 -0.18 0.18 425 A4: 11.64 0.51 -0.14 475 F7 11.39 0.54 0.06 426 F0: 11.69 0.38 -0.10 476 F5 11.73 0.51 -0.06 427 F5 10.10 0.54 -0.07 477 F3 11.94 0.47 0.04 428 F2 10.62 0.50 -0.21 478 A2 10.90 0.13 0.08 429 F6 9.81 0.43 -0.11 479 F7 12.04 0.56 0.00 430 F3: 12.23 0.45 -0.07 480 F0 10.41 0.29 0.11 431 F7 12.12 0.38 -0.03 481 F7 11.96 0.72 0.05 432 A0 12.03 0.10 0.01 482 F7 11.32 0.50 0.09 433 F7 11.54 0.65 -0.01 483 F7 10.97 0.60 -0.06 434 F6 10.64 0.40 -0.04 484 F7 11.48 0.54 0.10 435 F7 11.95 0.69 -0.21 485 F6 11.89 0.40 0.00 436 F2 11.68 0.61 0.04 486 F5 11.49 0.41 0.17 437 A7: 10.86 0.56 0.03 487 F7 10.93 0.66 -0.07 438 A5 11.59 0.43 -0.01 488 F6 10.87 0.43 -0.06 439 F2 11.15 0.31 0.04 489 F5 11.27 0.33 0.12 440 A5 11.75 0.50 -0.14 490 F7 11.70 0.44 0.26 441 F7 11.78 1.00 0.02 491 A5 11.47 0.28 0.16 442 F7 10.19 0.72 -0.06 492 F7 12.18 0.41 0.13 443 F7 11.56 0.61 0.03 493 F7 10.29 0.45 -0.09 444 A1 10.27 0.28 -0.02 494 F0 10:93 0.26 0.07 445 F7 12.92 0.78 -0.15 495 F7 11.73 0.41 0.13 446 F3 10.09 0.58 0.05 496 F6 8.16 0.27 -0.02 447 A3 10.67 0.49 -0.02 497 F5 11.55 0.43 0.13 448 F7 11.25 0.74 0.01 498 F5 11.70 0.25 0.07 449 A1 11.38 0.39 0.38 499 F4 11.13 0.32 -0.08 450 F2 10.46 0.65 0.04 500 F4 8.31 0.08 0.14 TABLE No. Sp. V B-V U-B No. Sp. V B-V U-B 501 F2 11.43 0.21 0.10 551 B9 11.92 0.36 0.18 502 F4 10.13 0.29 0.00 552 F1 10.66 0.06 0.55 503 F7 10.83 0.36 0.07 553 F7 11.31 0.29 -0.01 504 F7 10.77 0.49 0.09 554 F6 11.89 0.33 0.13 505 F7 11.44 0.40 0.19 555 F4 11.67 0.37 0.05 506 F5 12.03 0.27 0.23 556 F3 11.60 0.40 0.19 507 A1 12.10 0.06 0.22 557 F7 12.37 0.28 0.22 508 F1 11.39 0.26 0.15 558 A8: 11.70 0.30 0.17 509 A1 10.18 0.01 -0.33 559 A1 10.21 0.05 -0.10 510 F7 10.87 0.47 -0.06 560 F5 10.91 0.46 -0.16 511 A6 11.77 0.25 0.11 561 A7 11.55 0.21 0.26 512 F7 12.16 0.56 0.01 562 F7 11.68 0.09 -0.14 513 A3: 8.85 0.23 0.04 563 F2 9.97 0.46 -0.06 514 A1: 11.98 0.39 0.02 564 F6 11.69 0.45 -0.07 515 F7 10.69 0.00 -0.08 565 A0 9.61 0.10 -0.16 516 F3 11.91 0.32 0.13 566 F4 11.56 0.48 0.03 517 F7 12.18 0.41 0.15 567 F1 9.43 0.39 0.14 518 F6 12.15 0.54 -0.07 568 F7 11.38 0.58 0.18 519 F7 11.18 0.53 0.17 569 A7 9.52 0.36 0.06 520 F4 10.06 0.38 -0.04 570 A3 11.74 0.17 0.18 521 F4 11.31 0.36 -0.06 571 F3 11.13 0.59 0.10 522 A2 11.92 0.12 0.26 572 F7 11.38 0.50 0.05 523 F7 11.61 0.54 0.09 573 F5 8.96 0.41 -0.11 524 F7 10.94 0.39 0.05 574 A3 11.37 0.19 0.07 525 F1 9.99 0.34 0.17 575 A4 9.96 0.41 0.05 526 F1 11.50 0.34 -0.01 576 F6 9.77 0.63 -0.34 527 A0 12.24 -0.04 0.25 577 B5 8.00 -0.07 -0.15 528 F5 12.19 0.35 0.21 578 F6 11.37 0.48 -0.16 529 F7 11.95 0.46 0.06 579 A1 11.41 0.23 0.19 530 A6: 11.94 0.26 0.24 580 A8 9.98 0.31 -0.02 531 F7 11.64 0.46 0.01 581 F7 10.34 0.64 0.03 532 F7 9.82 0.48 -0.24 582 F5 11.12 0.36 -0.15 533 F6 11.07 0.36 0.14 583 F7 12.09 0.47 0.00 534 F7 11.95 0.23 0.16 584 F7 11.20 0.46 -0.04 535 F5 11.98 0.35 -0.08 585 AS 10.27 0.37 -0.04 536 F0 11.57 0.36 0.07 586 B9 9.06 0.01 0.05 537 F5 12.01 0.46 -0.04 587 A0 9.27 0.06 0.01 538 A1 9.53 0.19 0.12 588 F7 10.40 0.36 -0.04 539 F5: 11.97 0.41 -0.08 589 F3 11.01 0.30 -0.16 540 F5 12.23 0.35 0.24 590 F3 11.52 0.67 0.19 541 F2 11.66 0.39 0.09 591 F5 11.12 0.35 -0.17 542 F4 11.30 0.47 0.02 592 B8 9.34 -0.16 -0.02 543 F5 12.05 0.44 0.01 593 A3 11.27 -0.02 0.25 544 F7 11.65 0.55 0.19 594 A7 10.90 0.15 0.11 545 A0 12.66 0.04 0.26 595 F7 12.03 0.26 0.08 546 A3 10.51 0.09 0.22 596 F7 11.68 0.54 -0.19 547 A0 10.08 0.01 0.19 597 F7 11.65 0.39 -0.14 548 F4 11.40 0.39 0.05 598 A7 10.87 0.13 0.04 549 A0 11.73 0.39 0.17 599 A4 11.22 0.27 -0.04 550 A4 11.79 0.26 0.20 600 A7 12.11 0.13 0.13 TABLE No. Sp. V B-V U-B No. Sp. V B-V U-B 601 F3 8.03 0.34 -0.04 651 F7 9.40 0.50 -0.16 602 F5 10.22 0.45 -0.11 652 A5 11.06 0.20 0.06 603 A8 10.92 0.30 -0.01 653 F2 12.00 0.43 -0.18 604 F6 11.13 0.38 0.06 654 F7 11.54 0.86 0.21 605 F5 11.73 0.30 -0.15 655 F3 11.27 0.49 -0.02 606 F5 9.06 0.34 0.01 656 F7 11.18 0.52 -0.07 607 F0 11.66 0.39 -0.02 657 F5 10.86 0.47 -0.08 608 A8 10.92 0.21 0.23 658 A0 10.98 0.20 0.07 609 A2 10.76 0.18 0.20 659 F4 11.15 0.49 -0.04 610 F7 11.27 0.54 0.09 660 B7 8.58 -0.11 -0.37 611 A4 10.90 0.22 0.07 661 F2 11.49 0.69 -0.16 612 F5 9.07 0.18 0.06 662 F3 9.29 0.44 -0.20 613 F7 9.86 0.38 -0.02 663 A0 9.37 -0.21 -0.16 614 A3 11.24 0.33 0.30 664 F4 10.46 0.26 -0.03 615 F7 11.56 0.40 0.10 665 B9 8.39 -0.25 -0.04 616 F7 11.50 0.26 0.10 666 F6 10.47 0.49 -0.12 617 F7 10.94 0.37 0.07 667 A3 11.52 0.30 0.02 618 A0 9.38 0.07 0.02 668 F5 10.41 0.51 -0.14 619 F3 12.81 0.06 0.13 669 A0 8.95 0.25 -0.15 620 F7 12.06 0.39 0.03 670 F1 9.21 0.27 0.07 621 F0 11.48 0.28 0.02 671 F3 11.29 0.39 0.20 622 A9 11.08 0.18 0.29 672 A9: 11.75 0.29 0.13 623 F7 11.87 0.29 -0.07 673 A1 10.76 0.16 -0.18 624 F6 11.31 0.37 -0.03 674 F7 12.03 0.65 -0.01 625 F7 11.64 0.59 0.07 675 F7 11.58 0.47 -0.11 626 F6 10.93 0.30 -0.03 676 F5 11.88 0.34 0.12 627 F5 12.27 0.18 -0.01 677 A1 10.01 0.00 0.00 628 A5 11.01 0.17 0.17 678 A0 11.54 0.06 0.02 629 F7 13.26 0.50 -0.13 679 F7 11.12 0.46 0.03 630 F2 12.86 0.18 0.10 680 F7 11.55 0.57 0.52 631 A3 10.47 0.09 0.03 681 A0 9.63 0.04 0.08 632 A1 11.26 0.61 -0.42 682 F7 10.24 0.48 0.06 633 A0 9.51 -0.10 -0.03 683 F7 11.25 0.57 0.05 634 F5 10.98 0.30 0.14 684 F5 10.86 0.36 -0.05 635 F7 9.66 0.49 0.09 685 F7 9.53 0.26 0.18 636 A8 11.05 0.07 0.20 686 F7 11.88 0.30 -0.05 637 A0 9.95 -0.19 0.20 687 A3 11.73 0.15 0.35 638 F7 12.18 0.17 0.32 688 F6 11.08 0.34 0.07 639 A7 10.00 0.14 0.16 689 A0 10.54 -0.01 0.14 640 F4 10.79 0.07 0.36 690 A0 10.41 0.05 -0.08 641 A5 11.02 0.28 0.15 691 F0 10.59 0.34 0.04 642 B9 9.08 0.01 0.25 692 A0 11.69 0.37 0.04 643 F4 11.89 0.29 0.17 693 A3 10.92 0.03 -0.13 644 F5 11.56 0.40 0.24 694 F7 9.98 0.78 0.32 645 F3 11.03 0.36 0.06 695 F0 11.68 0.18 0.04 646 F7 10.38 0.75 0.16 696 F3 11.43 0.31 0.05 647 A6 11.10 0.24 0.09 697 F6 7.70 0.31 0.09 648 A0 10.74 0.21 0.22 698 A8 11.50 0.09 0.19 649 F6 9.59 0.47 -0.03 699 F7 11.61 0.26 0.24 650 F6 10.70 0.44 -0.10 700 F4 10.58 0.31 0.00 TABLE No. Sp. V B-V U-B No. Sp. V B-V U-B 701 F7 11.40 0.53 0.59 751 A0 9.67 0.02 -0.17 702 F2 11.51 0.51 0.13 752 F7 12.08 0.23 0.14 703 F5 12.02 0.48 -0.09 753 A0 12.33 0.41 0.12 704 F2 8.71 0.18 0.07 754 F4 11.29 0.26 0.20 705 A4 10.56 0.15 0.09 755 F6 11.00 0.41 -0.05 706 F5 9.92 0.34 -0.01 756 A4 12.16 0.15 0.40 707 F7 12.06 0.23 0.07 757 F6 11.75 0.48 0.11 708 F7 12.00 0.32 0.06 758 F6 11.18 0.39 -0.05 709 F6 11.54 0.32 0.06 759 F7 11.34 0.35 0.08 710 F3 11.76 0.32 0.04 760 A8: 11.80 0.37 0.20 711 B9 9.72 -0.07 0.07 761 F5 11.85 0.54 0.19 712 A1 9.89 0.10 0.08 762 F6 10.70 0.55 -0.09 713 F3 11.74 0.48 -0.01 763 A1 12.05 0.36 0.12 714 F6 11.46 0.29 0.29 764 A2 11.44 0.36 0.24 715 F7 11.45 0.53 0.05 765 F6 11.13 0.46 0.19 716 F7 10.96 0.54 0.14 766 F7 11.67 0.75 0.30 717 F6 10.22 0.50 -0.16 767 A9 11.16 0.37 -0.01 718 A3: 12.01 0.12 0.08 768 A0 12.26 0.03 -0.13 719 F5 11.58 0.33 0.02 769 A4 10.62 0.19 0.10 720 F2 11.62 0.39 -0.08 770 F7 12.22 0.64 0.01 721 A6 11.64 0.24 0.06 771 F2 11.92 0.34 0.07 722 F4 10.11 0.45 -0.25 772 A1 10.23 0.11 0.05 723 F5 12.06 0.27 0.07 773 F0 11.96 0.17 -0.11 724 F7 12.17 0.40 -0.01 774 A2 12.08 0.53 0.22 725 F7 11.85 0.36 0.02 775 A9 12.26 0.10 0.16 726 F7 11.79 0.40 -0.18 776 F2 10.58 0.33 0.10 727 A1 10.03 0.08 -0.04 777 F7 11.95 0.55 0.03 728 F7 11.26 0.59 -0.07 778 F7 12.05 0.40 0.32 729 F2 9.05 0.35 0.13 779 F7 12.12 0.46 0.00 730 F5 10.28 0.61 0.00 780 A3 12.46 0.32 0.09 731 A4 11.65 0.38 0.33 781 A5 12.61 0.15 0.08 732 A1 10.43 0.26 -0.22 782 F5 11.33 0.38 0.26 733 F7 11.13 0.58 0.03 783 F7 11.48 0.49 0.03 734 A2 11.82 0.32 0.07 784 A7 11.13 0.23 0.25 735 F5 10.25 0.46 -0.08 785 F7 11.93 0.45 0.12 736 F7 12.07 0.57 0.02 786 F7 12.14 0.38 0.13 737 F7 11.79 0.49 -0.04 787 A0 9.82 -0.07 0.24 738 F5 11.36 0.51 0.19 788 A6 10.00 0.15 0.38 739 F6 10.33 0.53 -0.03 789 F7 11.80 0.29 0.19 740 B6: 8.01 -0.11 -0.19 790 F7 11.93 0.41 0.20 741 F7 12.12 0.58 -0.26 791 A5 11.12 0.22 0.22 742 F2 12.01 0.26 0.13 792 F5 11.23 0.39 0.10 743 F1 11.52 0.48 -0.03 793 A9 11.00 0.25 0.08 744 A1 11.25 0.10 0.09 794 F7 11.04 0.53 0.37 745 F7 11.02 0.62 0.19 795 A3 9.28 0.00 0.06 746 F7 11.29 0.64 0.27 796 F2 9.23 0.31 0.24 747 F7 10.91 0.46 0.06 797 F2 9.80 0.39 0.07 748 F7 10.92 0.54 0.10 798 A6 10.87 0.21 0.17 749 F7 11.77 0.46 0.13 799 A7 9.90 0.15 0.26 750 F7 11.48 0.40 0.05 800 F5 11.01 0.23 0.11 TABLE No. Sp. V B-V U-B No. Sp. V B-V U-B 801 F5 11.00 0.20 0.13 851 A1 11.91 0.18 0.06 802 F7 10.20 0.34 0.14 852 F7 9.66 0.54 -0.20 803 F5 11.81 0.21 0.30 853 F7 11.53 0.75 0.20 804 A0 11.81 0.05 0.27 854 F3 11.63 0.31 0.06 805 F7 11.41 0.41 0.25 855 A5 11.17 0.34 0.04 806 F7 11.32 0.40 0.18 856 F7 13.03 0.75 -0.30 807 F4 11.84 0.31 0.11 857 A0 11.22 0.12 -0.17 808 F6 11.63 0.37 0.21 858 F7 11.11 0.54 -0.01 809 F6 11.44 0.50 0.14 859 F7 11.75 0.44 -0.04 810 F6 10.96 0.36 0.01 860 F7 12.07 0.48 -0.16 811 A5 11.53 0.15 0.20 861 A3 10.93 0.27 0.01 812 F7 9.25 0.23 0.08 862 F6 11.35 0.41 0.27 813 F7 9.37 0.50 0.08 863 F6 10.32 0.58 -0.12 814 F7 11.43 0.71 0.15 864 F7 11.31 0.33 -0.01 815 F7 10.95 0.59 0.11 865 F7 11.73 0.58 -0.22 816 F7 11.35 0.40 0.06 866 F0 10.38 0.51 -0.12 817 B8 8.11 0.11 0.21 867 F7 12.31 0.58 -0.14 818 A3 10.81 0.18 0.17 868 F3 8.09 0.41 -0.17 819 A1 9.21 -0.01 0.03 869 F7 11.59 0.54 -0.49 820 A1 9.78 0.05 0.29 870 F4 11.48 0.44 0.12 821 F6 10.01 0.48 -0.03 871 F7 10.75 0.64 -0.22 822 A2 10.66 0.14 0.13 872 F6 11.87 0.66 -0.16 823 F6 10.65 0.50 -0.04 873 A1 8.67 0.07 -0.05 824 F7 11.77 0.40 -0.09 874 A1 12.78 0.48 -0.17 825 F0 10.97 0.38 0.12 875 F6 9.52 0.58 -0.18 826 F1: 11.57 0.36 0.07 876 F7 12.02 0.49 -0.19 827 F4 11.14 0.37 0.11 877 F7 11.75 0.57 0.07 828 F7 11.64 0.75 0.38 878 F7 12.26 0.67 -0.39 829 F7 11.74 0.33 0.05 879 F7 10.69 0.62 -0.12 830 F6 11.23 0.40 0.02 880 F6 11.76 0.53 0.11 831 F7 12.05 0.46 0.11 881 F5 11.83 0.59 -0.18 832 F7 11.88 0.38 0.11 882 F5 11.03 0.39 -0.01 833 F7 11.80 0.29 0.07 883 F2 8.99 0.40 -0.16 834 F1 10.01 0.48 -0.12 884 B6 8.17 -0.07 0.07 835 F7 11.26 0.84 0.21 885 F7 11.50 0.47 -0.10 836 A8 12.00 0.21 -0.01 886 F5 10.73 0.18 -0.10 837 F6 10.61 0.43 -0.14 887 A6 10.71 0.22 0.13 838 F2 11.72 0.24 0.05 888 A1 12.52 0.32 0.06 839 A9 10.94 0.30 0.18 889 A3 12.31 0.20 0.13 840 F7 10.19 0.73 -0.09 890 A5 11.42 0.29 0.02 841 F4 11.69 0.40 -0.21 891 F7 11.81 0.53 0.18 842 F2 11.33 0.40 -0.02 892 F7 12.11 0.46 -0.20 843 A3 10.51 0.20 0.00 893 A3 10.97 0.07 0.13 844 A4 11.41 0.28 -0.03 894 F6 11.34 0.40 0.09 845 F7 11.78 0.36 0.07 895 F4 11.33 0.26 0.04 846 A1 11.17 0.07 -0.03 896 F7 12.71 0.31 0.13 847 F7 9.84 0.58 -0.05 897 F5 11.51 0.45 0.09 848 A1 11.21 0.12 0.08 898 A2 11.26 0.20 0.12 849 A1 12.12 0.20 0.15 899 A0 10.45 0.22 0.10 850 F5 11.57 0.39 -0.03 900 F6 10.91 0.41 0.10 TABLE No. Sp. V B-V U-B No. Sp. V B-V U-B 901 F7 11.24 0.54 -0.17 951 F7 11.86 0.80 -0.15 902 B7 8.32 -0.02 -0.07 952 A7 10.06 0.25 0.23 903 A1 12.26 0.26 0.19 953 A7 12.11 0.51 0.19 904 F7 11.95 0.54 -0.13 954 F6 9.88 0.73 0.02 905 F7 11.78 0.45 0.17 955 A4 11.48 0.32 0.16 906 F7 11.58 0.54 0.08 956 F2 10.52 0.43 0.02 907 F6 10.37 0.60 -0.04 957 F4 11.26 0.55 0.03 908 F4 11.67 0.47 0.05 958 F5 11.70 0.64 -0.03 909 F7 11.92 0.52 -0.01 959 A1 11.81 0.31 0.19 910 A6 10.75 0.23 0.71 960 F7 11.02 0.91 0.24 911 F3 10.56 0.44 -0.01 961 A1 11.30 0.13 -0.06 912 A1 10.00 0.24 -0.07 962 F6 11.24 0.61 -0.08 913 F3 11.59 0.31 -0.10 963 A2 11.64 0.43 0.15 914 A0 11.75 0.40 0.02 964 F7 10.98 0.75 0.03 915 F7 11.71 0.39 0.03 965 F7 11.79 0.50 -0.12 916 F6 10.92 0.55 0.01 966 F7 11.63 0.70 0.01 917 A2 11.76 0.11 0.09 967 A1 11.81 0.45 0.14 918 A3 10.96 0.12 0.27 968 F0 12.35 0.47 0.11 919 A1 10.76 0.18 -0.05 969 F0 9.23 0.32 0.08 920 F7 10.45 0.75 0.11 970 F7 9.81 0.75 0.29 921 F7 10.98 0.44 0.06 971 A7 10.23 0.37 0.08 922 F7 9.63 0.63 -0.17 972 A0 11.93 0.29 0.06 923 F6 11.60 0.67 -0.11 973 A9: 12.19 0.41 0.03 924 F7 12.14 0.80 -0.01 974 F6 9.73 0.63 -0.10 925 A2 11.08 0.26 -0.01 975 F7 11.06 0.56 0.00 926 F7 10.66 0.52 -0.01 976 A3: 11.25 0.38 0.00 927 F7 12.13 0.63 -0.19 977 F6 11.40 0.52 0.08 928 F6 11.01 0.48 0.13 978 A8 12.43 0.22 0.27 929 F7 11.59 0.70 0.03 979 F5 9.45 0.27 0.20 930 A7 10.76 0.45 0.01 980 F7 11.65 0.58 0.00 931 F7 11.72 0.76 -0.43 981 F0 9.52 0.35 0.14 932 F7 11.87 0.65 -0.19 982 F7 12.02 0.54 0.37 933 F2 12.01 0.51 -0.05 983 F7 11.89 0.67 0.21 934 F1 10.30 0.43 0.11 984 F7 10.78 0.68 0.07 935 F4 11.22 0.59 0.08 985 A8: 11.19 0.47 0.08 936 F7 11.79 0.58 0.05 986 F7 11.89 0.53 0.21 937 F6 11.24 0.25 -0.06 987 A0 10.76 0.22 0.10 938 F7 11.14 0.60 -0.12 988 F7 11.47 0.50 0.26 939 F3: 12.02 0.30 0.06 989 F6 11.57 0.59 0.18 940 F2 11.36 0.26 0.11 990 F7 12.61 0.42 0.14 941 A1 10.51 0.15 -0.09 991 A0: 12.18 0.33 0.38 942 A1 12.39 0.28 0.12 992 F7 11.00 0.54 0.23 943 F7 11.60 0.51 -0.05 993 F7 11.36 0.51 0.21 944 F7 11.88 0.59 -0.17 945 A1 10.16 0.18 0.03 946 F6 10.59 0.26 0.02 947 A5 10.84 0.28 0.10 948 F4 11.16 0.42 0.14 949 F7 12.14 0.49 -0.10 950 F7 11.67 0.57 -0.09