A MAGYAR MITTEILUNGEN TUDOMANYOS AKADEMIA DER CSILLAGVIZSGALO STERNWARTE INTEZETENEK DER UNGARISCHEN AKADEMIE KOZLEMENYEI DER WISSENSCHAFTEN BUDAPEST - SZABADSAGHEGY Nr. 72. M. KUN SPACE DISTRIBUTION OF STARS AND DIFFUSE MATTER IN THE REGION OF IC 1396 BUDAPEST, 1979 SPACE DISTRIBUTION OF STARS AND DIFFUSE MATTER IN THE REGION OF IC 1396 ABSTRACT Space distribution of stars and the interstellar absorbing medium have been investigated in a field of 19.5 square degrees containing the galactic cluster IC 1396 by means of objective prism spectral classification and photographic UBV photometry. This open cluster is a central region of the large OB association Cep OB2 and the field itself is the densest part of the association. Distribution of the absorbing material is very irregular in the region. The average absorption at the distance of the association is 1.5m. In addition to the earliest type stars, late B and early A stars also show some concentration at the distance of the association. INTRODUCTION OB associations are known to be groups of the earliest type stars associated with a large amount of interstellar gas and dust. They are considered to be places of star formation. OB stars within an association probably do not form a gravitationally bound group; they seem to expand (Ambartsumian, 1949). It is natural to suppose that OB associations contain stars of lower mass too, for they may arise during the same processes as OB stars. However, large volumes and low spatial densities of the associations make it difficult to find the possible fainter association members. It would be interesting to investigate what kinds of stars other than OB stars originate from OB associations and what sort of relationship exists between space densities and kinematics of different type of stars within an association. The answers to these questions might well help us to understand the processes by which associations come into being. This is of special interest in the case of the local spiral arm which is probably not a density-wave arm (Lin et al. 1969) so there must be a triggering mechanism of star formation different from the galactic shock accompanying the density wave. The present work is based on the observational material gathered from the field around IC 1396 in the period 1969-1972 at Konkoly Observatory. The aim of this study is to search for stars having lower absolute magnitude than OB stars in the association Cep OB2 by investigating the stellar space density along the line of sight in the direction of the association. Association Cep OB2 lies near the outer edge of the local spiral arm. Its galactic coordinates are: l=97deg - 107deg; b=+2deg - +8deg. It contains two galactic clusters: IC 1396 and NGC 7160. IC 1396 is an O-type cluster (Markarian, 1951) embedded in a large HII region (Markarian, 1957); NGC 7160 is a very small B1 type cluster (Markarian, 1953). These clusters seem to be the centres of the expansion (Ambartsumian, 1959). The average distance of the association from the Sun is 830 pc (Simonson, 1968). Because of the large dimensions and low spatial density of the stars its structural investigations in the optical wavelengths were restricted to the most luminous stars. I have tried to extend the study to the fainter stars in the densest part of the association. The dark material is concentrated in the same volume as the association stars so it reduces the limiting distance of the study. The observational material available here allows a rough mapping of the space distribution of the absorbing clouds as well as the plotting of the distribution of different type stars in the direction of this part of the association. OBSERVATIONAL DATA a) Spectral classification Spectral classes of stars up to 13m in B colour have been derived from objective prism spectra obtained from four objective prism plates. These plates were taken with aid of the 60/90/180cm Schmidt telescope at Konkoly Observatory using an objective prism giving a dispersion of 580 A/mm at H_gamma. One exposure was taken on Kodak OaO plate with an exposure time of 24m, and three were taken on Kodak IIIa-J plates with the exposure times 120m, 96m and 60m. The widening was 18" on each plate (i. e. 0.16mm). Classification criteria are virtually the same as those described by Nassau and Seyfert (1946). The number of classified stars is 843. Sharpness of the classification criteria necessitates a dividing of classified stars into the following groups: earlier than B3; B3-B7; B8-A1; A2-A6; A7-F1; F2-F8; G0-G8; K-M. The numbers of stars in each of the different spectral groups are given below: earlier than B3 38 B3-B7 63 B8-A1 203 A2-A6 112 A7-F1 75 F2-F8 151 G0-G8 81 K0-M0 120 In principle, it is possible to distinguish the different luminosity classes of G-K stars at such a dispersion (Seitter, 1975) but as most K stars are between 7-9m they are somewhat overexposed on our plates. Because of this, their two-colour diagrams and distance modulus - colour excess diagrams were used estimating their luminosity classes (see below). b) Photographic photometry UBV photographic magnitudes of stars having objective prism spectra have been determined. Five plates were taken in each colour. The plate - filter combinations and exposure times were the following: plate filter exposure time U Kodak 103a-O Schott UG1 2mm 10m B Kodak 103a-O Schott GG13 " 4m V Kodak 103a-D Schott GG14 " 4m The photometric scale based on photoelectric magnitudes of 14 stars of the cluster IC 1396, was determined by B. A. Balazs at Kitt Peak National Observatory in 1967-68 using 36 and 16 inch telescopes. The transformation equations between the instrumental and international colour systems are the following: V_instr = V + 0.07(B-V) - 0.07 B-V_instr = 1.04(B-V) - 0.03 U-B_instr = 0.91(U-B) - 0.11(B-V) + 0.01 Figure 1. The plates were measured using the Becker type iris photometer of the Konkoly Observatory. Mean errors of the photometry: +-0.06m for both V and B; +-0.08m for U. These errors are independent of the magnitude. In addition to these random errors the ultraviolet filter had a field error in a restricted area. Figure 1 shows the distribution of the stars of different spectral groups as a function of the apparent B magnitude. A comparison of the present spectral classification with the HD spectral types can be seen in Fig. 2. Figure 2. INTERSTELLAR REDDENING AND ABSORPTION Apparent stellar density strongly changes within the field presumably due to dark foreground clouds. According to the surface stellar density the field can be divided into six parts (Fig. 3). The surfaces of these parts (A), the number of stars (N) and the surface stellar densities (sigma) are given in the following table: Part A(sq.deg) N sigma(star/square degree) 1 2.3 94 40.84 2 5.3 148 27.92 3 1.6 85 53.12 4 2.0 62 31.09 5 5.8 359 61.81 6 2.6 90 34.61 Figure 3. Distance modulus - E_B-V colour excess diagrams have been drawn for each part separately. This has been done using the B0-F8 stars and assuming that all of these belong to the main sequence (Fig. 4). Absolute magnitudes and intrinsic colours of the spectral types were taken from Allen (1973). There is a strong reddening everywhere except in region 5 which contains the cluster IC 1396. In the region of the cluster the dispersions of the colour excesses are large; these dispersions are caused by a large number of small dark clouds having different absorptions (Shajn and Gaze, 1951). An interesting part of the field is region 3, situated east of the cluster. In this region the reddening is about 0.8m, as in the almost starless region 2, but the surface stellar density is nearly as high as in the region of the cluster. Figure 4. In the literature there are different values of the total to selective absorption for this region. Johnson (1965) found R=5.4 by infrared photometry of the mu Cephei; in addition, he obtained R=4.8 by applying the variable extinction method for the neighbouring association Cep OB3. Simonson (1968) showed that neither of these methods is suitable for determining R in this region; he also suggested that there is no reason to assume an abnormally high value of R. The value R=3.0 has been adopted in this work. Figure 5. Figure 5 shows the total absorption, a_v as a function of the distance assuming R=3.0 for each region separately. Except for region 5, there is a strong foreground absorption everywhere, caused by clouds situated 200-400 pc from the Sun. In the region of the cluster this method gives only a very smoothed picture of the dark material. The dust clouds seem to be concentrated between 600-1100 pc and the reddening changes almost from star to star. The strong absorption makes possible a rough division of the late type stars into different luminosity classes (Trumpler and Weaver, 1953), if they are put onto the y-E_B-V diagrams obtained from the main sequence stars. According to this estimation 64 G type stars are dwarfs, 14 are giants; in addition, 27 K type stars are dwarfs and 93 are giants. It is not possible to give a more accurate estimation of the absolute magnitudes of these giants as the absorption does not increase beyond 1200 pc; thus, this method gives only a lower limit of their luminosities and distances. SPACE DISTRIBUTION OF STARS Having evaluated the interstellar absorption it becomes possible for one to solve the convolution equation A(m)= Integral from -infinity to +infinity D(y) Phi(m-y) dy, separately for each spectral class. Here A(m) is the number of stars in the apparent magnitude interval (m - delta m, m + delta m); D(y) is the number of stars between distance moduli y - delta y and y + delta y; and Phi(M=m-y) is the luminosity function of a given spectral and luminosity class. The apparent magnitudes m and the distance moduli y are corrected for the absorption. To solve the equation the matrix method described by Dolan (1974) was used. At the absolute magnitudes of B8-A1 stars the absorption difference between the different parts of the field may cause noticeable differences between the distance limits in them. So it is not possible to deal with them together. Since it is only in region 5 that there are sufficient stars for the reliable evaluation of the equation, the densities of stars later than B7 have been calculated only for this part of the field. In the case of stars later than A1 the plate limit is within 500 pc even at the smallest absorption. The space distribution of the three spectral groups earlier than A2 are shown in Fig. 6, 7, 8. Straight lines show the field star densities assuming that these are functions solely of the distance from the galactic plane (Allen, 1973). Absolute values of the field star densities have been estimated in the case of stars earlier than B3 and B3-B7 from the shape of the density curve, and from van Rhijn's (1955) data in the case of B8-A1 stars. Density of stars earlier than B3 shows a maximum between 2500 and 3500 pc; it may well be that these stars form the upper edge of the Perseus spiral arm. The line of sight goes 300 pc above the galactic plane at this distance. Stars of the association are concentrated between 600 and 1100 pc. B3-B7 stars also show a concentration between the same distance limits. It is more difficult to decide whether or not there is a concentration of B8-A1 stars because the plate limit is about 1150 PC. With the assumption that the space density of the field A0 stars is nearly constant at a given galactic longitude and distance from the galactic equator an extrapolation has been made for its value from van Rhijn's (1955) data obtained at l=100deg, b=+7deg. The gradient of the curve indicates that there is a concentration within 1100 PC. Figure 6. Figure 7. Space distribution of B3-B7 stars Figure 8. Space distribution of B8-Al stars. The dashed line indicates the plate limit. Space density units are given as stars/10^3 pc^3, Error bars have been calculated on the assumption that the star number in every field segment has the statistical error N^1/2 (Dolan, 1974) Figures 9a, b, and c show respectively the densities of A2-A6, A7-F1 as well as F2-F8 stars. The density of A2-A6 stars is nearly constant within the plate limit in this direction, whereas the densities of the A7-F1 as well as the F2-F8 stars decrease in accordance with other observations (McCuskey, 1956). Figures 9a, b, c. Space distribution of A2-A6, A7-F1 and F2-F8 stars. Dashed lines indicate the plate limit. There are two possibilities for estimating the distance of K giants assuming that all they belong to the same luminosity class. on the basis of the available data, including the literature, it is not possible to decide whether this assumption is true or not. The first possibility is a statistical parallax calculation utilizing the available proper motion data. The results obtained in this way are independent of the photometry. The SAO Catalogue contains the proper motions of 36 K type giants of our field. Their apparent magnitudes are between 8.0m and 9.5m. From these data r=724 pc has been found to be the average distance. It implies an absolute magnitude M_v=-2.3m, so these stars are bright giants and they lie almost at the distance of the association. The other method of distance estimation is based on the assumption that these stars are of the third luminosity class, like the largest percentage of the late type giants of the galactic field. Then their absolute magnitudes are about +1.0m. In this case all these stars are nearer than 500 pc. Their two-colour diagram (Fig. 10) confirms this assumption as being the average colour excess in B-V about 0.2m, whereas at a distance 724 pc it ought to be at least 0.5m. Figure 10. Two-colour diagram of K giants. The dashed line indicates the unreddened diagram of the third luminosity class taken from Golay (1974). These two contradictory results indicate that either the kinematic or photometric data contain some systematic error, or one of our preliminary assumptions is not true (in particular, that they do not belong to the same luminosity class). So neither of the above estimations can be accepted without exact spectroscopic determination of the luminosity classes. CONCLUSIONS The distribution of stars in space shows that not only are OB stars concentrated at the distance of the association, but later B stars as well. There are, however, some signs of concentration of B8-A1 stars too, even though this is not really significant. In particular, the slope of the density curve shows that concentration does exist within 1100 pc. In the distribution of stars later than A1 the association cannot be traced because of the high foreground absorption and the limiting magnitude of the spectral classification. Due to the high interstellar absorption the study of B8-A1 stars has been restricted to an area of 5.8 square degrees including the cluster whose angular diameter is about one degree (Trumpler, 1930; Collinder, 1931; Markarian, 1951). Investigations of space distribution of stars in galactic clusters indicate the existence of extended coronae, whose diameters are 2.5-10 times larger than those of the clusters (Kholopov, 1968). The central part of a cluster contains the brightest cluster members, whereas the corona mainly consists of fainter stars. So it is possible that A0 or the later association members - if they exist - form a gravitationally bound system as the corona of the IC 1396. Reddish (1967) has found this feature to be true for the association Cyg OB2; Kholopov (1974) also claims that the expansion is the property of only the earliest type stars. The surface density of B8-A1 stars in region 5 is nearly constant; their distribution makes it difficult to recognize the core of the cluster (Fig. 11). This figure shows as well that the surface density of B8-A1 stars in region 3 is nearly the same as in the region of the cluster. A0 stars in part 3 have a reddening of about 0.9m, they all are behind a dust cloud. The constant surface density indicates that the high concentration of the stars continues in this direction with a dark foreground cloud in front of it. Nearly in the direction of the axis of this elongated concentration are the NGC 7160, mu Cephei and numerous bright stars. The whole association seems to have an elongated shape whose axis inclines to the galactic plane at 20deg. Figure 11. ACKNOWLEDGEMENTS I wish to thank to Dr L. G. Balazs for discussions and for his valuable advice. I am grateful to Dr B. A. Balazs that he put the photoelectric sequences at my disposal. REFERENCES Allen, C. W. 1973. Astrophysical Quantities 3rd ed., Athlone Press, London Ambartsumian, V. A. 1949. AZh. 26. 3. Ambartsumian, V. A. 1959. Max Planck Festschrift 97. Collinder, 1931. Annals of the Obs. Lund 2. Dolan, J. F. 1974. Astron. and Astrophys. 35. 105. Golay, M. 1974. Introduction to Astronomical Photometry p. 79-80. D. Reidel Publ. Company Dordrecht-Holland Johnson, H. L. 1965. ApJ. 141. 923. Kholopov, P. N. 1968. AZh. 45. 786. Kholopov, P. N. 1974. Astr. Tsirk. 847. Lin, C. C., Shu, F. H., Yuan, C. 1969. ApJ. 155. 721. Markarian, B. E. 1951. Biur. Soob. 9. 11. Markarian, B. E. 1953. Biur. Soob. 11. 11. Markarian, B. E. 1957. Non-Stable Stars, Yerevan McCuskey, S. W. 1956. ApJ. 123. 458. Nassau, J.J., Seyfert, C. K. 1946. ApJ. 103. 117. Reddish, V. C., Lawrence, L. C., Pratt, N. M. 1966. Publ. Obs. Edinburgh 5. 111. Seitter, W. C. 1975. Atlas for Objective Prism Spectra; Bonner Spectral Atlas II. Ferd. Dummler Verlag, Bonn Shajn, G. A., Gaze, V. F. 1950. Krim. Izv. 6. 3., Simonson, S. C. 1968. ApJ. 154. 923. Trumpler, R. J. 1930. Lick Obs. Bull. 14. 175. Trumpler, R. J. Weaver, H. F. 1953. Statistical Astronomy, California Press, Berkeley and Los Angeles van Rhijn, P. J. 1955. Publ. Kapteyn Astr. Lab. Groningen No 57. TABLE Spectra and UBV data of the survey stars No. Sp. V B-V U-B remarks 1 A7 10.49 1.05 0.13 2 B8 9.96 0.62 0.12 BD +54deg 2560 3 F0 10.33 0.73 0.02 4 B0 8.89 0.52 -0.68 BD +54deg 2575 5 G0 11.50 0.71 -0.03 6 K2 9.14 1.28 1.19 BD +54deg 2579 7 A5 8.12 0.55 -0.33 BD +54deg 2581 8 K2 8.37 1.62 1.60 BD +54deg 2585 9 B5 9.27 0.42 -0.22 BD +54deg 2587 10 A0 10.14 0.67 0.27 BD +54deg 2589 11 A0 9.60 0.08 0.26 BD +54deg 2598 12 B2 9.04 0.52 -0.44 BD +54deg 2611 13 A0 11.51 0.80 0.63 14 A0 11.29 0.63 0.54 15 B0 8.27 0.74 -0.44 BD +54deg 2607 16 A7 11.42 0.60 0.07 blend 17 A0 11.82 0.74 0.53 18 F6 9.87 0.66 -0.10 BD +54deg 2601 19 A5 8.93 0.57 -0.26 BD +54deg 2593 20 B8 11.08 0.66 0.28 21 A0 11.28 0.99 0.22 22 A0 10.22 1.93 1.66 23 F0 10.04 1.39 0.58 24 A3 8.95 0.43 -0.05 BD +54deg 2573 25 F0 10.73 0.63 0.12 BD +54deg 2569 26 F8 9.62 1.55 0.97 27 B3 11.93 0.65 -0.12: 28 B8 10.96 0.61 0.20 29 A0 10.56 0.69 -0.05 BD +54deg 2556 30 F2 9.48 1.80 1.40 BD +54deg 2554 31 F5 10.30 0.95 -0.02: BD +54deg 2564 32 K5 9.05 2.16 2.28 BD +54deg 2557 33 G8 10.11 0.93 0.16 34 A2 8.93 0.45 -0.25: BD +54deg 2567 35 F8 10.70 0.72 0.03 36 B8 10.46 0.58 -0.17 BD +54deg 2573 37 A4 10.78 0.46 0.25: 38 B8 10.86 0.78 0.12 39 A2 10.53 0.68 0.18 40 A7 10.67 0.72 0.38 41 K0 7.54 1.16 0.43 BD +54deg 2590 42 K0 7.85 1.20 0.45: BD +54deg 2597 43 A0 10.69 0.60 0.18 BD +54deg 2600 44 A5 10.38 0.62 0.46 45 F2 10.64 0.31 0.16 BD +54deg 2605 46 A0 11.04 0.31 -0.07 47 A0 11.81 0.18 0.15 48 A0 10.68 0.44 0.16 49 A0 10.50 0.47 0.18 50 A0 11.54 0.57 0.16 51 B5 9.33 0.49 -0.52 BD +54deg 2610 52 A0 10.89 0.58 0.43 53 A2 10.15 0.70 -0.01 BD +54deg 2608 54 B9 8.14 0.44 0.12 BD +54deg 2606 55 G6 10.64 0.65 0.02 56 G4 9.73 0.75 0.02 BD +54deg 2594 57 B0 10.74 0.64 -0.46 BD +54deg 2592 58 A0 11.24 0.53 0.09 59 F0 11.36 0.66 0.16 60 B2 10.26 0.62 -0.30 BD +54deg 2588 61 B8 11.72 0.88 -0.25 62 B8 11.70 0.60 -0.43 63 B7 10.21 0.49 -0.04 BD +54deg 2578 64 A2 10.73 0.52 0.12 65 B5 10.44 0.37 -0.21 66 F0 11.05 0.91 0.42 67 A0 11.62 0.86 0.24 68 A0 11.38 0.98 -0.11 69 F0 10.60 0.65 0.11 70 K0 7.58 1.21 0.66 BD +54deg 2555 71 A0 11.41 0.83 0.30 72 A7 11.16 0.73 0.23 73 A2 10.54 0.46 0.27 BD +54deg 2552 74 A7 10.68 0.74 -0.06 BD +54deg 2548 75 A0 10.30 0.82 -0.02 BD +54deg 2546 76 F8 10.57 0.88 -0.07 BD +54deg 2549 77 F2 10.55 0.70 -0.01 BD +54deg 2550 78 B9 6.31 0.14 -- BD +54deg 2544 79 A0 10.42 0.80 -0.13 BD +54deg 2539 80 F4 10.86 0.84 -0.20 81 K5 8.88 1.70 0.04 BD +55deg 2585 82 K0 7.99 1.53 1.05 BD +54deg 2538 83 F4 10.46 0.89 -0.06 BD +55deg 2590 84 K2 10.03 1.47 0.31 BD +54deg 2571 85 F0 12.11 0.55 0.05 blend 86 B5 11.36 0.45 -0.23 87 K 8.84 1.36 1.41 BD +54deg 2582 88 F0 10.39 0.54 0.03 BD +54deg 2584 89 K 10.03 1.48 1.51 90 A0 11.12 0.44 0.40 91 F7 11.14 0.90 -0.20 92 G0 9.53 0.76 0.16 BD +54deg 2609 93 A0 11.36 0.22 0.31 blend 94 A0 9.81 0.47 0.35 BD +55deg 2622 95 A2 11.00 0.50 0.33 96 F0 9.47 0.36 -0.08 97 G 10.86 0.79 0.32 98 G8 10.74 0.79 0.14 blend 99 G2 9.80 0.66 0.05 BD +54deg 2612 100 A0 11.90 0.38 0.01 101 B5 7.89 0.38 -0.52 BD +54deg 2589 102 F2 10.70 0.52 0.22 blend 103 A0 9.25 0.27 -0.01 BD +55deg 2610 104 A5 8.95 0.57 -0.09 blend 105 A4 9.90 0.26 0.02 BD +55deg 2602 106 F0 11.02 0.84 -0.18 107 F2 11.20 0.87 -0.30 108 K 9.74 2.07 2.09 109 K5 9.08 2.17 1.92: BD +55deg 2581 110 K0 9.43 1.31 0.69 BD +55deg 2589 111 G8 10.74 0.83 0.54 112 K0 7.72 1.42 1.22 BD +55deg 2597 113 K2 8.86 1.57 1.54 BD +55deg 2598 114 A2 10.71 0.90 0.43 115 K2 9.28 1.64 1.62 BD +55deg 2601 116 B8 11.13 0.60 -0.44 117 B5 10.24 0.35 -0.11 blend 118 B7 10.76 0.48 -0.19 BD +55deg 2606, blend 119 G2 9.47 0.70 -0.03 BD +55deg 2608 120 A0 11.75 0.62 0.53 121 F2 10.80 0.79 0.13 122 G2 10.89 0.63 0.15 123 F0 9.92 0.54 0.15 BD +55deg 2621 124 K0 8.45 1.20 0.74 BD +55deg 2624 125 B6 10.20 0.36 -0.02 BD +55deg 2625 126 A0 11.18 0.48 0.40 127 A2 9.54 0.41 0.33 BD +55deg 2628 128 F5 9.70 0.64 0.00 BD +55deg 2632 129 A0 11.00 0.91 0.42 130 K7 9.25 1.70 1.55 BD +55deg 2635 131 F0 11.35 0.61 0.45 132 A5 10.81 0.47 0.34 BD +55deg 2618 133 F0 10.37 0.66 0.12 134 A0 11.84 0.90 0.50 135 A0 10.27 1.60 1.31 blend 136 F8 10.74 0.68 0.11 137 F5 11.36 0.73 0.12 138 K0 10.43 0.91 -- blend 139 B8 11.41 0.72 0.25 blend 140 G0 11.35 0.91 -- blend 141 G 11.46 2.19 -- 142 F8 9.31 0.63 -0.13 BD +55deg 2596 143 F0 11.31 0.74 0.39 144 F0 10.75 0.79 -0.09 145 K2 9.27 1.43 0.04 BD +55deg 2583 146 F0 10.03 0.72 0.08 BD +55deg 2579 147 F0 10.06 0.60 -0.08 BD +55deg 2578 148 A0 7.86 0.59 -- BD +55deg 2576 149 G 11.66 1.01 0.03 150 G 10.46 1.04 0.08 151 F8 9.97 0.62 -0.27 BD +55deg 2574 152 G0 9.01 0.85 0.20 BD +55deg 2577 153 F8 10.10 0.75 -0.06 BD +55deg 2582 154 A3 9.52 0.42 0.15 BD +55deg 2586 155 B8 9.50 0.39 0.14 BD +55deg 2591 156 A0 10.57 0.68 0.08 157 B2 8.97 0.71 -0.38 BD +55deg 2592 158 K0 10.78 1.08 0.36 159 G0 11.35 0.98 -0.12 160 G0 10.56 0.72 0.14 161 K0 9.82 1.04 0.79 BD +55deg 2605 162 F8 10.85 0.98 0.16 163 A0 10.74 0.73 0.54 BD +55deg 2607 164 A0 12.36 0.49 -0.03 165 F2 10.45 0.53 0.15 BD +55deg 2616 166 F8 10.43 0.57 -0.01 167 A2 10.34 0.44 0.50 168 F2 10.70 0.58 0.19 BD +55deg 2619, blend 169 A0 11.02 0.43 0.44 170 F8 11.56 0.76 0.30 171 B8 11.31 0.87 0.20 172 F0 10.28 0.69 0.54 173 F5 10.19 0.65 -0.20 174 F8 10.33 0.95 0.25 blend 175 K0 9.12 1.60 1.19 BD +55deg 2634 176 F2 11.26 0.82 0.41 177 B5 10.31 0.36 0.32 BD +55deg 2559, edge 178 B5 10.92 0.78 0.06 edge 179 A0 11.67 0.86 0.18 180 G 11.92 0.83 -- 181 F2 12.60 0.87 0.43 blend 182 K 10.57 1.57 1.28 183 B3 9.23 0.59 -- BD +55deg 2637 184 F2 9.74 0.35 0.19 BD +55deg 2629 185 F5 10.70 0.58 0.25 186 A2 11.15 0.49 0.38 blend 187 A2 11.33 0.54 0.42 188 F8 11.51 1.30 0.29 189 K7 8.39 1.82 1.65 BD +55deg 2620 190 A0 11.80 0.55 0.45 191 F8 11.20 0.74 0.05 192 F2 10.92 0.59 0.05 193 A0 12.63 0.90 0.11 194 F2 10.84 0.60 0.05 195 F8 11.56 0.77 0.00 196 A2 11.03 0.59 0.16 197 F5 10.74 1.60 1.34 198 B2 10.46 0.53 -0.30 199 F8 11.16 0.90 0.30 200 K0 7.62 1.44 1.06 BD +55deg 2595 201 F6 10.27 0.67 -0.07 BD +55deg 2580 202 B8 11.46 0.92 0.17 203 B3 8.62 0.78 -0.48 BD +55deg 2575, blend 204 B3 9.12 0.69 -0.31 BD +55deg 2569 205 F0 9.42 0.49 -0.04 BD +55deg 2568 206 A2 9.07 0.42 0.07 BD +55deg 2560 207 A0 11.16 0.97 0.27 208 F2 10.01 0.56 -0.01 BD +55deg 2584 209 K0 7.77 1.42 1.76 BD +55deg 2587 210 A0 11.36 0.90 0.43 211 A0 9.82 0.94 0.85 BD +55deg 2588 212 F0 11.63 0.86 0.22 213 F5 10.04 0.48 0.03 214 A0 11.79 0.70 0.22 215 F0 11.52 0.63 0.29 216 F2 11.43 0.71 -0.01 217 A5 11.55 0.95 0.35 218 K5 8.94 2.13 2.64 BD +55deg 2600 219 G5 9.47 1.12 0.42 BD +55deg 2604 220 A0 11.47 0.21 -- blend 221 A2 10.46 0.59 0.20 BD +55deg 2609 222 A7 11.63 0.57 0.56 223 A0 8.93 0.35 -0.04 BD +55deg 2613 224 F2 10.16 0.52 0.09 BD +55deg 2615 225 B8 11.04 0.59 0.03 BD +55deg 2626 226 F0 10.67 0.48 0.31 227 A2 11.37 0.57 0.49 228 F2 11.06 0.60 0.14 229 G2 10.48 0.64 0.21 230 A0 11.96 0.34 0.19 231 A2 11.72 0.37 0.04 blend 232 K5 10.71 1.80 1.77 blend 233 A0 12.42 0.11 -- blend 234 A7 10.66 0.40 0.17 235 G2 11.00 0.69 -0.04 236 G5 10.97 0.63 0.16 237 K5 9.22 1.33 0.92 BD +55deg 2633 238 A0 11.53 0.79 0.18 239 A0 11.51 0.57 0.78 240 A0 10.87 1.17 0.84 241 A0 11.04 0.74 0.41 242 A0 11.22 0.65 0.37 243 A7 11.06 0.59 0.40 244 K 10.87 1.30 1.11 245 A2 10.95 0.58 0.48 246 A0 11.08 0.34 0.15 247 A0 11.21 0.26 0.01 248 B2 10.40 0.72 -0.31 249 A0 11.01 0.44 0.35 250 G5 10.70 0.82 0.39 251 F6 10.73 0.78 0.30 252 K2 9.87 1.47 -- BD +56deg 2603 253 F4 10.94 1.04 0.13 254 A0 11.51 0.61 -0.22 255 A2 10.45 0.68 0.44 BD +56deg 2587 256 F8 11.43 0.73 -0.12 257 A2 10.20 0.71 0.25 BD +56deg 2583 258 K0 8.19 1.30 0.89 BD +56deg 2580 259 A0 11.67 0.87 0.58 blend 260 G2 10.95 0.93 0.37 261 F5 10.25 0.67 0.10 262 K0 8.05 1.26 -- BD +56deg 2565 263 A7 10.63 0.81 0.36 264 A0 11.49 0.88 0.55 265 A0 11.34 0.91 -0.05 266 A2 10.67 0.74 0.43 267 A4 11.52 0.82 0.35 268 F6 11.48 0.78 -0.09 269 F2 10.43 0.57 0.00 270 A0 11.81 0.72 0.04 271 A0 11.15 0.66 -0.01 272 A0 9.42 0.09 -0.02 BD +56deg 2608 273 F5 10.08 0.41 -0.15 BD +56deg 2611 274 A0 10.86 0.31 -0.11 275 K0 11.06 0.85 0.62 276 B2 11.48 0.56 -0.27 277 B6 10.11 0.34 -0.05 278 A0 11.23 0.53 0.38 279 G 11.48 0.92 0.44 280 F0 9.72 0.29 0.08 BD +56deg 2633 281 B2 9.25 0.70 -0.35 BD +56deg 2640 282 A0 11.53 0.96 0.29 283 A2 11.35 0.96 0.52 284 F8 11.35 0.80 0.45: 285 A0 11.58 0.85 0.49 286 F2 11.64 0.96 0.68: 287 A0 12.25 0.57 0.38 288 B5 10.73 0.44 -0.26 289 K2 10.15 1.54 1.42 290 F8 10.40 0.85 0.74 BD +56deg 2639 291 K5 9.50 1.68 2.27 BD +56deg 2637 292 A0 11.15 0.48 0.27 293 B3 8.92 0.29 -0.62 BD +56deg 2632 294 B3 9.49 0.21 -0.70 BD +56deg 2631 295 F8 11.27 0.43 0.25 296 A0 11.79 0.40 0.17 297 B7 11.05 0.25 -0.26 298 G0 11.29 0.65 0.29 299 B7 11.69 0.50 -0.07 300 K 11.08 1.05 0.00 301 K 8.61 0.94 0.79 BD +56deg 2624 302 A0 12.25 0.80 0.44 303 A0 11.10 1.23 0.84 blend 304 A7 12.10 0.50 0.56 305 F2 10.11 2.05 0.29 306 B2 9.21 0.23 -0.64 BD +56deg 2618 307 B0 7.40 0.14 -0.79 BD +56deg 2614 308 G0 9.80 0.51 -- BD +56deg 2609 309 G8 10.00 0.82 0.52 BD +56deg 2597 310 A4 10.98 0.73 0.43 311 A0 11.27 0.84 0.25 312 A2 9.51 0.59 0.11 BD +56deg 2591 313 B8 11.00 0.65 0.24 314 A0 11.35 0.81 0.65 blend 315 A0 9.22 0.30 -0.02 BD +56deg 2585 316 A0 11.27 0.76 0.29 317 A0 11.81 0.80 0.12: 318 A7 10.98 0.79 0.50 319 K 10.46 1.76 1.73 320 A4 10.07 0.74 0.80 321 G2 10.69 0.83 0.04 322 B8 10.68 0.67 0.00 323 K 9.62 1.77 1.37 BD +56deg 2572 324 A5 11.30 0.91 0.55 325 A7 11.46 0.88 0.29 326 G5 9.79 0.82 0.19 BD +56deg 2568 327 A7 11.37 1.71 1.27 328 A0 11.08 0.78 0.23 329 A5 10.22 0.60 0.09 BD +56deg 2566 330 B5 10.27 0.89 -0.06 331 B8 10.89 0.94 0.03 332 A6 10.77 1.06 0.62 blend 333 B0 11.54 0.98 0.15 edge 334 A2 11.68 0.95 0.14 blend 335 F0 11.56 0.77 0.46 336 A2 10.83 0.67 0.40: 337 F0 10.62 0.64 0.18 338 F0 10.39 0.78 -0.05 339 G0 10.02 0.56 0.18 BD +56deg 2579 340 F4 8.27 0.35 -0.23 BD +56deg 2581 341 B1 8.68 0.33 -0.83 BD +56deg 2584 342 F4 11.22 0.69 -0.08 343 F2 11.15 0.47 0.10 344 G2 10.37 0.68 0.05 345 K 10.12 1.20 1.22 346 F2 10.31 0.47 0.02 347 B8 10.63 0.12 -0.09 BD +56deg 2612 348 G2 10.82 0.48 0.38 349 K2 9.28 1.69 2.29 BD +56deg 2624 350 B8 9.98 1.07 0.97 351 K 11.06 1.31 1.12 352 F0 10.51 0.64 0.53 BD +56deg 2635 353 F0 10.58 0.57 0.51 BD +56deg 2638 354 F8 9.97 0.47 0.08 BD +56deg 2646 355 A5 10.59 0.64 0.03 BD +56deg 2647 356 F8 10.78 0.52 0.23 BD +56deg 2650 357 B5 10.60 0.57 -0.06 358 F8 11.50 0.62 0.05 359 K 10.34 1.77 1.58 360 G8 10.05 0.64 0.53 361 K5 9.42 1.44 2.36 BD +56deg 2666 362 K0 10.79 1.79 1.18 363 F2 11.30 0.47 0.35 364 B7 10.43 0.35 0.09 edge 365 F2 11.97 0.53 0.46 366 G8 11.59 0.47 0.44 367 F5 10.31 0.68 0.07 BD +56deg 2648 368 K0 9.85 1.14 1.13 BD +56deg 2644 369 A0 9.84 0.26 0.10: BD +56deg 2642 370 F5 12.03 0.63 0.22 371 A5 11.19 0.63 0.58 372 A2 11.36 0.45 0.16 373 B8 11.06 0.21 -0.31 374 F0 11.65 0.55 -- 375 A0 11.48 0.36 0.43 376' B5 9.24 0.87 0.35 BD +56deg 2621 377' A7 9.42 0.35 0.14 BD +56deg 2606 378' K0 9.09 1.07 0.97 BD +56deg 2619 379' B8 10.57 0.34 -0.04 380' A2 10.71 0.58 0.37 381' F0 10.57 0.40 0.06 382' K 10.89 1.54 1.59 383' F0 11.70 0.69 0.41 384' B0 6.90 0.19 -0.72 BD +57deg 2374 385' F2 9.20 0.43 0.03 BD +56deg 2600 386' F2 9.65 0.41 -0.02 BD +56deg 2600 387' A2 10.10 0.45 2.04 388' O6 5.86 0.19 -0.60 BD +56deg 2717 389' B0 8.04 0.27 -0.77 BD +56deg 2717 390' B0 8.03 0.14 -0.68 BD +56deg 2717 391' F4 7.44 0.46 0.04 BD +56deg 2623 392' F4 8.76 0.62 0.08 BD +56deg 2623 393' B0.5 10.47 0.65 -0.35 394' B2 8.65 0.25 -0.57 BD +56deg 2610 395 A0 11.80 0.16 0.03 396 A0 11.42 0.26 0.38 397 F6 10.25 0.46 0.04 398 M0 9.15 1.76 2.45 BD +56deg 2616 399 K5 9.10 1.02 0.19 BD +56deg 2613 400 B1 9.16 0.36 -0.50 BD +56deg 2615 401 A0 11.45 0.28 0.08 402 B5 12.10 0.56 -0.18 403 K0 10.18 1.35 1.17 404 B3 10.32 0.37 -0.33 BD +56deg 2602 405 F6 10.15 0.57 -0.01 BD +56deg 2599 406 B5 10.81 0.52 -0.18 407 K0 10.30 1.29 0.25 408 A2 11.53 0.58 -0.29 409 B9 9.45 0.24 -0.19 BD +56deg 2594 410 B5 12.51 0.70 0.19 411 A0 12.57 1.06 0.17 412 F0 10.35 0.37 -0.04 BD +56deg 2568, blend 413 A0 11.04 0.36 0.15 414 K2 10.33 1.10 0.78 415 M 9.91 1.90 1.78 416 G8 8.13 0.87 -0.01 BD +56deg 2578 417 G8 10.69 0.95 0.22 418 B5 9.94 0.82 0.00 BD +56deg 2577 419 M 10.94 2.24 1.21 420 K5 10.18 1.44 1.43 BD +56deg 2576 421 A0 11.81 0.81 0.64 422 K0 8.08 1.26 0.83 BD +56deg 2574 423 A0 11.86 0.88 0.16 424 F8 10.29 0.88 0.05 425 G0 10.22 1.00 0.28 426 A0 11.96 1.07 0.45 427 F8 10.49 0.97 0.15 BD +56deg 2563 428 K0 7.68 1.77 1.67 BD +56deg 2561 429 B8 10.74 1.01 0.05 430 F8 10.81 0.96 0.14 edge 431 K0 9.48 1.35 -0.01: 432 A2 11.56 1.27 0.68 433 A5 11.43 0.83 0.57 434 K0 8.00 1.64 1.54 BD +56deg 2569 435 G8 11.72 0.96 0.12 436 K2 9.45 1.42 1.30 BD +56deg 2575 437 A0 11.73 0.92 0.39 438 K 8.70 1.59 1.59 BD +56deg 2582 439 F8 11.65 0.71 0.21 440 F5 10.59 0.51 0.13 441 G2 11.29 0.73 0.10 442 A3 10.01 0.24 0.06 BD +56deg 2593 443 A2 10.38 0.16 0.48 444 B5 11.30 0.45 -0.12 445 A0 9.39 0.05 -0.05 BD +56deg 2595 446 B3 10.11 0.25 -0.42 447 B3 8.38 0.41 -0.72 BD +56deg 2598 448 B3 9.46 0.14 -0.39 BD +56deg 2604 449 A0 12.14 0.46 0.16 450 B0 8.39 0.39 -0.79 BD +56deg 2620 451 B5 10.20 0.23 -0.52 BD +56deg 2622, blend 452 G2 11.14 0.40 0.53 blend 453 F8 12.62 0.92 0.36 454 K 11.96 1.41 0.08 455 F2 10.72 0.42 0.38 456 B8 10.74 0.48 0.22 457 K5 8.46 1.08 1.23 BD +56deg 2634 458 A5 11.68 0.70 0.72 459 K0 11.59 0.85 0.53 blend 460 A0 12.37 0.38 0.66 461 F5 11.71 0.65 0.54 462 F0 10.39 0.59 0.46 BD +56deg 2645 463 B8 11.54 0.53 0.22 464 A0 11.96 0.31 0.15 edge 465 K0 10.90 0.69 0.66 466 A0 12.01 0.63 0.64 467 A0 11.21 0.32 0.42 468 A0 11.18 0.32 0.35 469 A0 8.72 0.04 -0.06 BD +56deg 2652 470 A0 12.39 0.71 0.23 471 A2 11.64 0.37 0.52 472 F8 10.49 0.45 0.10 473 A2 11.21 0.44 0.69 474 F0 10.93 0.68 0.42 475 G5 9.70 0.53 0.29 476 F2 10.71 0.79 0.29 477 K2 8.52 1.48 1.75 BD +56deg 2636 478 F6 11.79 0.81 0.43 479 A0 12.36 0.45 0.48 480 K4 10.67 1.17 0.90 481 B8 11.25 0.12 -0.11 482 G0 10.67 0.67 0.50 483 A7 11.93 0.48 0.49 484 F2 11.50 0.71 0.46 485 B2 9.81 0.04 -0.65 486 A2 9.48 0.22 -0.12 487 B8 11.04 0.02 -0.16 488 A0 11.94 0.35 0.61 489 B8 10.70 0.25 -0.10 490 A0 11.94 0.49 0.10 491 B0 8.63 0.33 -0.79 BD +56deg 2605 492 B3 11.02 0.54 -0.20 edge 493 B5 10.86 0.82 0.11 blend 494 A0 11.19 0.85 0.38 495 K0 10.69 0.71 0.40 496 A0 11.96 0.90 -0.26 blend 497 F8 11.05 0.75 0.13 498 G8 10.02 0.74 0.17 BD +57deg 2347 499 B5 10.95 0.71 -0.13 500 K0 8.08 1.09 0.87 BD +56deg 2590 501 G8 11.72 0.72 0.35 502' B0 7.45 0.57 -0.45 BD +56deg 2589 503 A0 11.39 1.02 0.70 504 A0 11.31 0.90 1.01: blend 505 A2 11.28 0.85 0.56 506 A5 9.34 0.49 0.31 BD +56deg 2571 507 F8 9.44 0.86 0.41 BD +56deg 2570 508 F5 9.63 0.70 0.13 BD +56deg 2564 509 F8 7.82 0.82 -0.05 BD +56deg 2562 510 F8 10.44 0.75 0.03 edge 511 A0 11.25 1.19 0.24 blend 512 F6 9.41 0.75 0.22 BD +57deg 2316 513 F2 8.44 0.77 -0.22 BD +57deg 2317 514 A0 11.69 1.06 0.79 515 F8 11.73 1.02 0.70 516 F8 11.18 0.76 0.20 517 F6 11.57 0.99 0.40 518 A0 12.27 1.07 0.70 519 B8 10.72 0.50 0.14 BD +57deg 2336 520 A7 11.29 0.67 0.76: 521 F8 10.42 0.50 0.05 BD +57deg 2345 522 B3 9.92 0.29 -0.44 BD +57deg 2350 523 A2 10.71 0.71 0.45 524 K2 9.81 1.06 1.05 BD +57deg 2353 525 B8 10.34 0.58 0.10 526 M 10.65 1.83 1.37 527 F8 11.39 0.70 -0.13 528 K2 10.52 1.40 0.95 529 G5 11.04 0.82 0.16 530 A0 12.00 0.53 0.09 531 F0 11.04 0.79 -0.05 532 A5 11.58 0.65 0.46 533 A2 9.48 0.56 0.36 BD +57deg 2356 534 A0 11.31 0.42 0.03 535 A7 11.67 0.53 0.33 536 A4 10.84 0.47 0.41 537 A0 11.43 0.35 0.10 538 A0 12.45 0.38 0.20 539 A4 11.63 0.59 0.43 blend 540 B6 11.24 0.27 -0.25 541 A7 12.05 0.62 0.50 542 A5 11.26 0.32 0.41 543 A0 12.19 0.41 0.42 544 B2 9.95 0.06 -0.55 BD +57deg 2369 545 B7 10.58 0.13 -0.23 546 F 10.36 1.32 1.47 547 A2 12.01 0.29 0.35 548 K4 9.83 1.33 1.51 BD +56deg 2630 549 K 9.98 1.91 2.35 BD +56deg 2627 550 B8 9.04 0.37 0.09 BD +57deg 2386 551 F0 11.59 0.75 0.56 552 F 11.51 0.73 0.44 553 F 11.51 0.75 0.30 554 B8 11.39 0.43 0.11 555 F8 10.87 0.59 0.38 556 G5 11.01 0.58 0.43 557 K0 8.95 1.05 0.79 edge 558 A2 8.35 0.14 -0.07 BD +57deg 2402 559 F0 12.15 0.73 0.67 560 M 9.35 1.94 1.69 BD +57deg 2398 561 A0 9.95 0.12 0.38 BD +57deg 2395, blend 562 B3 9.48 0.49 -0.23 BD +57deg 2395, blend 563 A0 11.61 0.71 0.73 564 F0 11.58 0.72 0.59 565 B5 9.73 0.41 -- BD +57deg 2383 566 F0 12.02 0.43 0.37 567 A0 11.59 0.92 0.93 568 B5 10.01 0.12 -0.12 BD +57deg 2375 569 A6 10.68 0.46 -0.27 570 K0 8.38 1.20 1.28 BD +57deg 2371 571 A7 12.49 0.63 0.30 blend 572 G8 11.40 0.76 0.27 573 K0 7.90 1.05 0.79 BD +57deg 2359 574 F8 10.46 0.60 0.19 575 A0 11.77 0.42 0.17 576 K0 11.25 0.84 0.48 577 G8 10.79 0.80 0.31 578 F4 10.77 0.76 0.35 579 F6 12.69 0.76 0.51 580 B8 11.95 0.91 0.57 581 B2 9.53 0.23 -0.51 BD +57deg 2343 582 B7 10.15 0.32 -0.16 BD +57deg 2335 583 A0 11.18 0.42 -0.03 584 B3 9.39 0.29 -0.44 BD +57deg 2334 585 A0 11.57 0.90 0.82 blend 586 A0 11.37 0.91 0.36 587 B3 10.45 0.58 -0.21 BD +57deg 2327 588 K2 9.08 1.34 1.35 BD +57deg 2319 589 G0 11.47 0.84 0.13 590 A2 11.46 1.21 0.54 edge 591 K0 7.49 1.31 1.09 BD +57deg 2318 592 G2 10.39 0.79 0.05 593 G5 7.09 0.77 -0.23: BD +57deg 2322 594 F8 10.37 0.69 -- BD +57deg 2324 595 A7 9.61 0.34 0.15 BD +57deg 2332 596 B8 10.12 0.55 0.35 BD +57deg 2333 597 G 11.84 1.00 0.21 598 B5 9.92 0.38 -0.08 BD +57deg 2339 599 G2 11.67 0.85 0.51 600 K2 9.21 1.20 1.36 BD +57deg 2351 601 A2 11.77 0.74 0.85 602 B8 12.82 0.86 0.48 603 B8 10.39 0.34 0.10 604 G8 10.86 0.86 0.37 605 A2 11.33 0.65 0.78 606 A5 11.18 0.77 0.68 607 A5 10.89 0.81 0.70 608 B7 9.67 0.35 -0.31 BD +57deg 2363 609 F2 11.15 0.57 0.13 blend 610 F8 10.24 0.61 0.11 BD +57deg 2373 611 K4 9.36 1.60 2.24 BD +57deg 2381 612 B8 10.60 0.30 0.12 BD +57deg 2382 613 F2 11.79 0.71 0.24 614 A0 12.21 0.57 0.61 615 G0 10.80 0.91 0.51 616 A7 10.94 0.78 0.64 BD +57deg 2397 617 K0 10.33 1.45 1.25 BD +57deg 2400 618 A5 10.39 0.47 0.55 619 A0 10.42 0.46 0.43 620 A2 8.28 0.20 -0.05 BD +57deg 2403 621 A7 10.39 0.51 0.46 BD +57deg 2400 622 A4 11.35 0.48 0.52 623 G4 12.38 0.53 0.69 624 K0 11.75 0.71 0.15: edge 625 A0 12.05 0.26 0.21: edge 626 B0 11.17 0.34 -0.67 627 G5 10.71 0.72 0.48 628 G8 11.27 0.77 0.64 629 G5 8.40 0.73 0.08 BD +57deg 2399 630 K 11.98 1.31 1.14 631 A2 12.57 0.48 0.51 632 A2 11.46 0.44 0.49 633 M 7.23 2.03 2.36 BD +57deg 2396 634 A2 11.74 0.40 0.42 635 A0 9.30 0.40 0.29 BD +57deg 2391 636 K0 6.79 1.12 0.66 BD +57deg 2392 637 F8 11.71 0.71 0.22 638 K0 9.11 1.12 0.35 BD +57deg 2388 639 A4 11.35 0.49 0.49 640 G0 10.73 0.73 0.47 641 A0 10.74 0.49 0.52 642' B2 8.92 0.29 -0.62 BD +57deg 2380 643 A0 10.77 0.41 0.42 644 F8 11.36 0.59 0.15 645 B2 9.72 0.37 0.47 BD +57deg 2376 646 A2 10.15 0.36 0.56 647 A0 11.68 0.70 0.26 648 K2 9.32 1.25 1.41 BD +57deg 2367 649 A6 11.75 0.68 0.62 650 B6 9.97 0.42 -0.09 BD +57deg 2366 651 A0 11.63 0.60 0.55 652 B2 8.83 0.35 -0.29: BD +57deg 2360 653 A0 12.08 0.50 0.54 654 B2 8.51 0.58 0.60 BD +57deg 2354 655 B7 10.66 0.65 0.13 BD +57deg 2352 656 A2 7.97 0.30 -0.10 BD +57deg 2349 657 F2 8.80 0.49 0.06 BD +57deg 2342 658 A2 8.88 0.31 0.11 BD +57deg 2338 659 A2 9.05 0.37 0.19 BD +57deg 2337 660 G 11.68 0.84 0.41 661 F8 11.45 0.69 0.22 662 A4 10.10 0.82 0.48: 663 K5 7.98 1.45 1.44: BD +57deg 2323 664 A2 9.10 0.36 0.18 BD +57deg 2320 665 B8 10.78 1.04 0.46 edge 666 G8 11.69 1.61 1.30 blend 667 G0 9.29 0.73 0.15 BD +57deg 2321, edge 668 F8 11.86 1.00 0.48 669 K2 8.76 1.14 1.32 BD +57deg 2330 670 A3 10.12 0.46 0.37 BD +57deg 2330 671 A7 12.15 0.41 -0.03 blend 672 K4 10.08 1.62 1.77 673 G8 10.84 0.70 0.41 674 B8 11.10 0.65 0.27 675 A0 12.07 0.67 0.43 676 A0 12.32 0.54 0.46 677 K0 10.15 1.01 0.85 BD +57deg 2365 678 K4 9.29 2.03 2.92: BD +57deg 2368 679 K2 11.40 0.94 0.57 680 B8 11.69 0.44 -0.01 681 B5 11.41 0.32 -0.18 682 A0 11.62 0.52 -0.07 683 F0 11.65 0.73 0.15 684 F8 11.41 0.65 0.11 685 K4 10.46 1.40 1.69 686 F2 11.93 0.52 0.46 687 B7 9.97 0.15 -0.15 BD +57deg 2366 688 A0 11.45 0.44 -0.07 689 B2 10.56 0.37 -0.53: 690 F0 11.60 0.60 0.59 691 F8 10.22 0.67 0.44 692 F5 10.65 0.51 0.26 693 F5 9.81 0.50 0.21 694 F2 11.33 0.54 0.30 695 K0 11.82 0.62 0.95: edge 696 F2 11.67 0.52 0.50 697 A0 11.41 0.31 0.29 698 A2 10.47 1.14 1.37 699 K2 10.47 1.23 0.47 700 F8 11.52 0.58 0.19 701 F0 10.47 0.36 0.17 BD +57deg 2394 702 A0 11.30 0.34 0.22 703 F6 9.66 0.72 0.20 BD +57deg 2398 704 B7 9.62 0.53 0.18 BD +57deg 2387 705 F0 11.21 0.72 0.36 blend 706 G2 10.81 0.55 0.64 BD +57deg 2387 707 F8 11.07 0.75 0.30 708 A0 11.61 0.84 0.23 709 M 9.77 1.86 2.32 BD +57deg 2379 710 G5 10.74 0.63 0.32 711 A4 11.71 0.61 0.16 712 B3 8.49 0.41 -0.56 BD +57deg 2372 713 G8 11.19 0.65 0.26 714 A0 11.73 0.62 0.52 715 A4 11.20 0.49 0.71 716 A2 11.07 0.48 0.52 717 B8 11.26 0.51 -0.08 718 A0 11.51 0.68 -0.01 719 K2 10.64 1.64 1.62 720 A0 11.37 0.52 0.35 721 A4 11.37 0.70 0.61 722 B1 9.28 0.42 -0.35 BD +57deg 2343 723 A0 12.04 0.84 0.77 724 A0 12.20 0.74 0.38 725 F0 8.13 0.45 0.02 BD +57deg 2344 726 F4 10.92 0.68 0.19 727 B8 10.89 0.53 0.24 728 A0 11.84 0.60 1.02 729 A2 10.56 0.39 0.19 BD +57deg 2329 730 G5 9.94 0.97 0.15 BD +57deg 2328 731 K2 8.01 1.28 1.11: BD +58deg 2263 732 A0 10.54 1.07 0.19 733 F8 10.31 0.71 0.01 BD +58deg 2269 734 B0 7.90 0.92 -0.26 BD +58deg 2272 735 G2 11.04 0.76 0.05: 736 A4 10.48 0.40 0.36: BD +58deg 2278 737 F8 10.26 0.58 0.11 BD +58deg 2286 738 K2 10.48 1.47 1.69 BD +58deg 2280 739 B1 8.61 0.20 -0.58 BD +58deg 2283 740 F8 10.98 0.73 0.14 741 A2 10.37 0.27 0.34 BD +57deg 2348 742 A2 11.23 0.61 0.52 743 B3 9.88 0.48 -0.26 BD +58deg 2292 744 B3 10.01 0.16 -0.31: 745 K0 7.93 1.16 0.99: BD +58deg 2295 746 B8 11.14 0.55 -0.05 747 B2 10.67 0.70 0.24 BD +58deg 2297 748 G2 11.54 0.74 0.31 749 B8 7.76 0.27 -0.17 BD +58deg 2300 750 G8 11.01 0.75 0.55 751 A0 11.21 0.65 0.18 752 G2 11.42 0.67 0.41 753 B5 11.32 0.43 -0.03 754 B5 11.98 0.53 -0.03 blend 755 F5 10.86 0.56 0.24 756 A7 10.04 0.44 0.40 BD +57deg 2377 757 F6 10.23 0.38 -- BD +57deg 2389 758 B8 10.28 0.28 0.23 BD +57deg 2389 759 A4 11.37 0.49 0.76 blend 760 A4 11.17 0.44 0.60 761 A0 11.70 0.37 0.20 762 K5 8.57 1.17 2.87: edge 763 A0 12.01 0.33 0.35: 764 F8 11.17 0.55 0.34: 765 A0 12.76 0.59 0.23 blend 766 G8 11.66 0.43 0.49 767 A0 9.77 0.46 -0.29 BD +58deg 2315 768 F0 9.04 0.46 0.03 BD +58deg 2313 769 G0 9.90 0.53 0.00 BD +58deg 2312 770 F8 10.75 0.56 0.30 771 F0 11.67 0.67 0.49 772 G 12.04 0.85 0.29 773 A0 11.79 0.81 0.10 774 A0 11.06 0.68 0.33 775 A2 11.85 0.68 0.13 776 A2 11.42 0.68 0.01 777 F8 11.35 0.68 0.16: 778 A0 11.64 0.72 0.64: 779 A2 11.20 0.91 0.53: 780 A4 10.02 0.37 0.55 BD +58deg 2287, blend 781 F5 10.20 0.68 0.45 BD +58deg 2286 782 F6 10.21 0.50 0.15: BD +58deg 2284 783 F2 9.79 0.99 0.34 BD +58deg 2288 784 B5 9.87 0.90 0.10 785 F0 10.80 0.48 0.16: 786 K0 10.23 1.14 1.18: blend 787 A2 10.20 0.35 0.42: BD +58deg 2271 788 F2 11.56 0.84 0.42: 789 A4 11.77 1.13 0.70 790 F0 11.03 0.51 0.18 791 A2 10.68 0.97 0.73: 792 F3 10.98 0.62 0.30 793 A2 11.24 0.59 0.41: 794 F2 10.11 0.41 0.20: BD +58deg 2291 795 B5 8.38 0.15 -0.23 BD +58deg 2290 796 F0 10.43 0.39 0.29 blend 797 B5 10.40 0.68 0.11 798 F8 10.62 0.60 0.22 BD +58deg 2298 799 F8 9.73 0.43 0.50 BD +58deg 2285, blend 800 A7 10.76 0.48 0.50 801 G0 10.89 0.58 0.30 802 A7 10.39 0.42 0.25 803 F8 11.15 1.21 0.54 blend 804 F6 11.22 0.79 0.52 805 A0 11.37 0.57 0.21 806 F8 10.76 0.66 0.03 807 A2 9.21 0.40 0.03 BD +58deg 2318 808 B5 10.14 0.46 0.32 809 B2 9.21 0.30 -0.54 BD +58deg 2320 810 A0 10.72 0.42 0.25: 811 F2 9.50 0.45 0.28 BD +58deg 2322 812 A2 11.40 0.39 0.55 813 A0 11.78 0.69 0.19 814 A2 11.04 0.32 0.45 815 A2 11.89 0.25 0.60: edge 816 A7 11.19 0.41 0.37 817 F2 11.57 0.51 0.24 818 K 6.21 1.07 1.58 BD +58deg 2314 819 F2 10.56 0.52 0.29: BD +58deg 2310 820 G5 10.40 0.72 0.35 BD +58deg 2308 821 F8 10.81 0.92 0.62 822 B3 9.46 0.74 0.13 BD +58deg 2303 823 F8 11.19 0.73 0.41 blend 824 A4 11.73 0.90 0.18 825 F2 10.63 1.22 0.64: 826 K0 8.33 1.45 1.78: BD +58deg 2277 827 A2 11.30 0.90 0.73: 828 B8 10.64 0.66 0.07: BD +58deg 2293 829 B8 10.33 0.69 0.44: 830 A0 9.09 0.28 0.28: BD +58deg 2301 831 G0 9.59 0.58 0.25: BD +58deg 2304 832 F4 10.34 0.51 0.39 833 F6 12.32 0.54 0.48 834 A0 11.45 0.51 0.35 835 G2 11.51 0.41 0.41 836 A2 10.76 0.39 0.60 837 A0 12.45 0.44 0.32 838 A2 11.65 0.21 0.34 839 A0 7.73 0.25 -0.22 BD +57deg 2326 840 F5 12.14 0.81 0.84 841 F0 8.08 0.77 -0.01 blend 842 F0 8.81 0.57 0.25 blend NOTES TO THE TABLE A point (') at the right upper side of the running number denotes photoelectrically measured magnitudes. Blend is remarked if the photographic image of the measured star is distorted by a neighbouring star. A colon beside the U-B colour denotes that the ultraviolet magnitude of the star is uncertain because of the field error of the ultraviolet filter. Edge is remarked if the star is near the edge of the plate. Photoelectric magnitudes and colours of stars were taken from the following sources: Balazs, B. A., private communication (376, 377, 378, 379, 380, 381, 382, 383, 387). Eggen, 0. J. 1966. Roy. Obs. Bull. No. 120. (385, 386, 391, 392). Deutschman, W. A., Davis, R. J., Schild, R. E. 1976. ApJ. Suppl. 30. 97. (293, 642). Hiltner, W. A. 1956. ApJ. Suppl. 2. 389. (281, 307, 384, 502). Simonson, S. C. 1968. ApJ. 154. 923. (388, 389, 390, 394). Finding chart of the survey stars I. Finding chart of the survey stars II.