A MAGYAR              MITTEILUNGEN
                 TUDOMANYOS AKADEMIA            DER
                   CSILLAGVIZSGALO           STERNWARTE
                     INTEZETENEK       DER UNGARISCHEN AKADEMIE
                     KOZLEMENYEI          DER WISSENSCHAFTEN



                         BUDAPEST-SZABADSAGHEGY
                                Nr. 68.


                              L. G. BALAZS




                   DISTRIBUTION OF STARS OF SPECTRAL

                              TYPES F7 AND

                       EARLIER IN A LYRA REGION




                             BUDAPEST, 1975




             DISTRIBUTION OF STARS OF SPECTRAL TYPES F7 AND
                       EARLIER IN A LYRA REGION


                               SUMMARY

  A study has been made of the spatial distribution of early type stars in 
a region of intermediate galactic latitude. Objective prism plates were 
used to survey an area of 19.5 sq.deg in Lyra for all stars of spectral type 
F7 and earlier down to 13^th photographic magnitude. 524 stars were 
detected, for which spectral types and photographic UBV colours were 
obtained. The stars were separated into four groups - spectral class A1 
and earlier, A2-A7, A8-F2, and F3-F7 - and the space densities 
determined for each group. The space density curves show that the first 
two groups both appear to be composed of two kinematically distinct 
subsystems, each having a Gaussian velocity distribution but with a 
ratio of the velocity dispersions of 1.8:1. These two subsystems 
probably differ in age and it may be significant that the derived age 
difference, about 3x10^8 years, is close to the time-difference between 
two consecutive periods of star formation predicted by the density wave 
theory of spiral structure. Further observations, however, are needed to 
rule out other birth mechanisms having the same characteristic time.


                            INTRODUCTION

  The distribution of the stars off the galactic plane is of considerable 
interest in order to understand some of the dynamical properties of our 
stellar system. To derive the three-dimensional distribution, we must 
analyse data concerning the apparent surface distribution in those 
galactic latitudes that are usually called "high" (|b| approx.>=40deg) 
and "intermediate" (approx. 40deg>=|b|>=10deg). The overwhelming 
majority of objects recognisable in high and intermediate galactic 
latitudes belongs to mean main-sequence stars and ordinary giants of 
spectral types A - K. In this paper we analyse stars F7 and earlier in 
an area of 19.5 sq.deg in Lyra.


                           OBSERVATIONAL MATERIAL

  An area of 19.5 square degrees centred on l = 62.69deg, b = +15.99deg 
(alpha = 18h 42m, delta = +33deg 20') was chosen for investigation. 
The observations were carried out with the 60/90/180 cm Schmidt telescope of 
the mountain station of the Konkoly Observatory. Spectral types and UBV 
colours were derived for 524 stars brighter than 13^th photographic 
magnitude. The spectral classes are based on three objective prism 
plates taken with a 5deg UBK7 (uv transmitting) prism that gives a 
dispersion of 580 A/mm at Hgamma. Kodak OaO emulsions were used, and the 
widening was 18", equivalent to 0.16 mm on the plate. The classification 
criteria were those given. by STOCK and SLETTEBAK (1959) and STOCK (1971). 
The plates were made with double exposures of 6m and 24m so that any 
systematic variations in the classification with photographic density could be 
estimated.

  The UBV photometry is based on four plates taken in each colour. The filters, 
emulsion types, and exposure times used are given in the following table:

U:      Kodak OaO + Schott UG1  2 mm filter exp. time: 10m 
B:	Kodak OaO + Schott GG13 2 mm filter  "	        5m
V:	Kodak OaD + Schott GG14 2 mm filter  "	        4m

The international system is connected with the instrumental system 
according to the equations:

    V_instr = V - 0.05(B-V) - 0.01
(B-V)_instr = 1.08(B-V) + 0.04
(U-B)_instr = 1.11(U-B) - 0.04(B-V) + 0.02

The plates were measured with the Becker-type iris photometer of the 
Konkoly Observatory, using a photoelectric sequence obtained with the 
Konkoly Observatory 60 cm photometric telescope. The mean errors of the 
photographically determined colours are +- 0.08m, 0.07m and 0.06m for 
U, B, and V, respectively.


 

               Figure 1.a-d.  The distribution of the stars
                              against V magnitude.  



                    THE SPACE DISTRIBUTION OF THE STARS

  According to the sharpness of the classificational criteria and to the 
number of stars in each subclass four subgroups were determined: Stars 
earlier than A2, A2-A7, A8-F2, and F3-F7. The distribution of the stars 
against the V magnitude, in the subgroups defined, are demonstrated in 
Figs. 1a-1d. For determining the interstellar absorption the stars in each 
subgroup were divided into five groups according to their visual brightness: 
<7; 7-9; 9-11; 11-12; and >12. For each subgroup mean spectral types and 
colour indices were determined. Adopting JOHNSON's (1963) relation between 
intrinsic colour indices and spectral types the E_B-V and E_U-B colour excesses 
were obtained. The colour excesses determined by this method are plotted in 
Fig. 2, as a function of the distance modulus obtained by subtracting from 
the mean V magnitude of each subgroup the absolute magnitude belonging to 
the mean spectral type. Adopting a ratio of total to selective absorption 
R = A_V/E_B-V = 3 for the total absorption a value A_V = 0.06 rho could be 
obtained, where rho = V-M_V. According to this formula the absorption in 
the observed direction at a distance of 300 pc amounts to 75% of the 
absorption at 1000 pc indicating that the interstellar dust is concentrated in 
a 80 pc half thick layer along the galactic plane for this galactic longitude. 
Our determination is in good agreement with FITZGERALD's (1968) data 
( 0.1<=E_y<0.2 ) for this area.


 

        Figure 2. The colour excesses (E_B-V and E_U-B) as
                  functions of uncorrected distance modulus.


  The space densities were derived by grouping the stars in order of the 
distance modulus, obtained from the measured V magnitude and the mean absolute 
magnitude of the spectral type, corrected for the absorption and dividing the 
number of stars by the volume containing them. Assuming a Gaussian distribution 
of absolute magnitudes at a given spectral type the mean absolute magnitude at 
a given visual brightness can be obtained using the basic convolution equation 
of stellar statistics. The computation results the formula (MALMQUIST 1936)

                 mean(M(m)) = M_0 - sigma^2/A(m) dA(m)/dm

where M_0, sigma, and A(m) are the intrinsic absolute magnitude, the standard 
deviation of the Gaussian distribution, and the number of stars in a m +-1/2 
interval, respectively.
  The densities derived by this method are plotted in Figs. 3a-3d. The dashed 
lines show the limit of the completeness of the sample caused by the limiting 
magnitude of classification. We shall discuss in the following section the 
spatial-distribution of the stars of each subclass separately and in more 
detail.


                      DISCUSSION OF THE SPACE DENSITIES

  The density-gradients ( delta nu/delta r ) of the different subgroups are 
nearly the same up to 600 pc, except for the break-down caused by the plate 
limit. At about 600pc the density-gradient of the A2-A7 stars changes and 
becomes smaller. A similar change is visible in the distribution of stars 
younger than A2 at 1000 pc but it is based on a small number of stars and 
therefore its significance is questionable. Other authors ( VAN RHIJN 1955, 
KUROCHKIN 1958, PERRY 1969, WOOLLEY and STEWARD 1967), however, derived a 
similar change in the density gradient at stars younger than A2 so this effect 
in our case seems to be realistic. The spatial distribution of the A stars near 
the galactic poles shows a similar space density curve as those stars in our 
case. The similarity between this distributions and those obtained by the 
present investigation suggests that the observed density gradients of stars 
younger than A2, and A2-A7, in our case, are mainly due to the contributions 
of the gradients perpendicular to the galactic plane to the gradient in the 
line of sight.


 

               Figure 3.a.-d. The derived space densities of the 
               different subgroups. (The dashed lines show the 
               limit of the completness of the sample.)


  Supposing that the distribution of stars in the phase space is an even 
function of the Z velocity component we can derive the following relation 
connecting the spatial density, the standard deviation of the Z velocity 
component and the gravitational potential (OGORODNIKOV 1965):


 


After integration and elementary computations we obtain: 


 


In our case we can take nu from our observations making the assumption that nu 
depends mainly on the z coordinate. We assume that the same holds for 
delta Phi / delta z in the direction observed and take it from the observations 
in the galactic caps (reviewed by OORT 1965). sigma_z(0) may be varied inside 
reasonable limits according to the observed data. If the formula given above 
has resulted a horizontal straight line in the sigma_z(z);z diagram we should 
assume that the velocity distribution, in the area observed, is Gaussian, since 
in that case sigma_z(z) is independent of z. Using the eye-estimated density 
curve of the stars A2-A7 derived from our observations and substituting 
sigma_z(0)=6.8 km/sec we get the curve plotted in Fig.4. The curve runs 
approximately horizontally up to 70 pc and above 180 pc, and the ratio of the 
velocity dispersions characterising the two horizontal parts of the curve 
equals to 1:1.8. Nearly the same ratio ( 1:2 ) was observed by WOOLLEY et al. 
( 1969 ) and HARDING et al. ( 1971 ) for A0 stars in the south galactic cap. 
For sigma_z (0) they obtained 9 km/sec. Therefore the shape of the density 
curve may be explained as a superposition of two Gaussian velocity 
distributions having the above ratio of the velocity dispersions. At z = 0 
the ratio of the densities of the two subsystems equals to about 1:7, and 1:70 
in the case of stars younger than A2 if we adopt the change of the density 
gradient at r = 1.000 pc as a real effect. It is to be mentioned that 
JONES ( 1972 ) found that the M giants in the south galactic cap had a similar 
dispersion dependence to those plotted in Fig.4. His sigma_z(0)= 7 km/sec 
agrees very well with our value but the increase of velocity dispersion is 
stronger than in our case.


 

Figure 4. The sigma_z(z)/sigma_z(0) ratio computed from the density 
          curve of A2-A7 stars plotted against the height (z) above 
          the galactic plane.


  The explanation that the shape of the density curve and the z dependence of 
the velocity dispersion of the A type stars caused by a condensation of those 
stars around the sun seems to be improbable, because the search for determining 
the spatial density of these stars, reported by McCUSKEY (1965), does not show 
significant condensation in the direction of our observed area projected onto 
the galactic plane. Moreover the condensations are different at different 
spectral types but in our case the density gradients are nearly independent of 
the spectral type at the first part of the density curves.
  The less compact subsystem is more prominent among the A2-A7 stars than 
among stars earlier than A2, which have mostly a spectral type B8 or later. 
Fig. 5 shows the logarithmic ratio of the density of the less compact component 
to the total density at z=0 using the data of different investigators. 
The most prominent feature in this figure is the "break" at A0 in the values 
of the ratios.


 

Figure 5. The logarithm of the ratio of the density of the less compact 
          component to the total density at z=0 using the data of different 
          investigators.


  If stars are born continuously the existence of two kinematically 
different subsystems would be difficult to explain. This supports the 
idea of steplike birth. Taking into account that the young stars are more 
concentrated to the galactic plane than the older stars and that the less 
compact subsystem increases in its prominence towards stars having longer 
lifetimes it is reasonable to suppose that the two kinematically different 
subsystems differ in age, too. The time difference between two "birth events" 
may be estimated by the lifetime of the stars at which the "break" appears in 
Fig. 5. Using the theoretical lifetimes published by IBEN ( 1967 ) and the 
empirical bolometric absolute magnitudes of DAVIS and WEBB ( 1970 ) and the 
absolute visual magnitudes of JUNG ( 1970, 1971 ) the lifetimes of the A0 stars 
are about 3x10^8 years. The uncertainties of the spectral classification of the 
late type B and early type A stars on spectrograms of small scale determine a 
confidence interval around A0 in Fig. 5. The edges of this interval are the 
spectral types B8 and A2. The lifetime tau of the stars at which the "break" 
appears lies therefore in the interval: 1.5x10^8yrs

               Finding chart of the survey stars. North is at the
               top and East is at the left.


					
			TABLE

	Spectra and UBV data of the survey stars
      No.	Sp.	  V	B-V	 U-B	remarks

	1.	A1	10.86  -0.19	 0.01	BD +31deg 3341
	2.	F5	 9.97	0.39	-0.05	BD +31deg 3334
	3.	A2	 9.86  -0.07	 0.15	BD +31deg 3338
	4.	A1	 9.76  -0.15	 0.06	BD +31deg 3346
	5.	F5	11.92	0.19	 0.06	
	6.	F4	12.32	0.38	-0.05	
	7.	F7	10.18	0.45	 0.02	BD +31deg 3333
       *8.	A1	 6.39  -0.04	-0.26	BD +31deg 3332
	9.	F5	11.30	0.56	-0.03	
      *10.	A2	 7.37	0.28	 0.05	BD +31deg 3327
       11.	F7	 9.94	0.44	-0.02	BD +31deg 3326
       12.	F6	11.45	0.51	-0.12	
      *13.	A3	 9.17	0.16	 0.05	BD +31deg 3317
       14.	F5	10.50	0.49	-0.07	
       15.	F5	12.09	0.54	-0.06	
       16.	A2	11.84	0.27	 0.18	
       17.	F6	10.67	0.32	 0.07	
       18.	A3	11.69	0.20	 0.06	
      *19.	A1	 9.88	0.30	 0.03	BD +32deg 3177
       20.	F2	12.03	0.43	-0.08	
      *21.	A7	11.50	0.39	 0.07	
       22.	B2	11.36  -0.14	 0.16	
      *23.	F0	10.70	0.29	 0.04	
       24.	F5	10.67	0.57	-0.11	BD +32deg 3184
      *25.	F5	11.59	0.65	-0.11	

       26.	F5	11.44	0.52	-0.07	
      *27.	F2	10.36	0.37	 0.00	BD +32deg 3186
       28.	F4	12.84	0.85	  -	
       29.	A9	 9.78	0.34	-0.07	BD +32deg 3178
      *30.	F3	11.04	0.35	-0.05	
      *31.	F1	10.80	0.27	-0.03	
      *32.	A7	11.65	0.27	 0.01	BD +32deg 3199
      *33.	F2	10.34	0.53	 0.05	
       34.	F7	10.26	0.60	-0.09	BD +32deg 3191
       35.	A7	11.91	0.20	 0.02	
       36.	B9	 9.22  -0.06	-0.08	
       37.	F3	12.35	0.46	-0.20	BD +32deg 3199
       38.	F5	12.10	 -	  -	blend
       39.	F7	 9.10	 -	  -	BD +32deg 3198, blend
       40.	A2	 8.91  -0.01	 0.10	BD +32deg 3203
       41.	A3	11.43	0.11	-0.09	
       42.	A6	11.99	0.40	-0.14	
       43.	A2	10.83	0.36	-0.01	
       44.	A3	 8.55	0.30	 0.13	BD +32deg 3210
       45.	B9	 8.89  -0.05	-0.20	BD +32deg 3212
       46.	F4	12.03	0.50	-0.21	
       47.	F2	11.38	0.38	-0.06	
       48.	A7	11.54	0.48	-0.25	
       49.	A8	 9.30	0.16	-0.02	BD +32deg 3204
       50.	F7	 9.80	0.57	 0.00	BD +31deg 3360

       51.	F6	 9.92	0.69	 0.18	
       52.	A5	12.64	0.49    -0.26	
       53.	A9	10.30	0.29    -0.07	BD +31deg 3358
       54.	F6	10.91	0.57    -0.20	
      *55.	A3	12.79	0.33    -0.02	
      *56.	A9	 5.68	0.35	 0.00	BD +31deg 3348
       57.	A7	12.59	0.36    -0.22	
       58.	A7	11.81	0.24    -0.16	
       59.	A4	12.41	0.16	-0.13	
       60.	F6	10.04	0.42	-0.06	BD +31deg 3349
       61.	F5	10.47	0.35	-0.15	
       62.	A5	10.91	0.28	-0.07	
       63.	F5	10.68	0.37	-0.25	
       64.	F6	 9.31	0.40	-0.15	BD +31deg 3350
       65.	F3	12.27	0.43	-0.06	
       66.	F5	12.75	0.30	-0.27	
       67.	A5	12.03	0.14	-0.07	
       68.	A6	13.00	0.29	-0.22	
       69.	F6	11.61	0.43	-0.20	
       70.	A7	12.50	0.35	-0.16	
       71.	A7	10.62  -0.17	-0.39	BD +31deg 3354
       72.	F0	12.47	0.44	-0.25	
       73.	F5	10.01	0.34	-0.02	BD +31deg 3352
       74.	F5	11.45	0.53	-0.05	BD +31deg 3357
       75.	F5	11.65	0.36	-0.14	

       76.	F4	10.96	0.19	-0.01	
       77.	F0	11.57	0.31	 0.01	
       78.	F0	 9.27	0.26	 0.03	BD +31deg 3362
       79.	A7	10.21	0.08	 0.09	BD +31deg 3363
       80.	F0	11.75	0.25	-0.12	
       81.	F5	10.62	0.37	 0.01	
       82.	F2	11.79	0.22	 0.03	
       83.	F5	11.82	0.33	-0.15	
       84.	A9	11.02	0.14	 0.19	
       85.	F2	12.54	0.43	-0.05	
       86.	F4	11.50	0.18	-0.02	
       87.	A6	 9.58	0.09	 0.10	BD +31deg 3368
       88.	F5	11.08	0.40	-0.07	
      *89.	B4	 6.04  -0.14	-0.61	BD +31deg 3369
       90.	F1	11.42	0.25	-0.09	
       91.	A5	11.88	0.21	 0.00	
       92.	A0	10.86	0.00	 0.03	BD +31deg 3372
       93.	F0	10.89	0.14	-0.02	
       94.	F2	11.87	0.36	-0.27	
       95.	F2	11.28	0.26	-0.10	
       96.	A0	 8.48  -0.05	-0.09	BD +31deg 3371
      *97.	B6	 6.62  -0.01	-0.11	BD +31deg 3373
       98.	A2	 9.44  -0.08	 0.05	BD +31deg 3374
       99.	F1	10.95	0.28	-0.06	
      100.	F5	10.56	0.47	-0.06	

      101.	F2	11.28	0.31	 0.05	
      102.	F6	12.21	0.86	-0.20	
      103.	F4	10.62	0.36	-0.02	
      104.	F0	12.43	0.44	-0.32	
      105.	F6	11.8	 -	  -	blend
      106.	F4	12.24	0.45	-0.27	
      107.	A9	13.03	0.52	-0.10	
      108.	F1	12.01	0.34	-0.10	
      109.	F1	11.53	0.28	-0.19	
      110.	A9	10.71	0.07	 0.16	BD +31deg 3379
      111.	F7	10.81	0.76	 0.24	
      112.	F5	 9.82	0.37	 0.08	BD +32deg 3238
      113.	F4	 9.87	0.30	 0.06	BD +32deg 3233
      114.	B9	 9.83  -0.05	 0.17	BD +32deg 3230
      115.	A7	10.58	0.19	 0.04	BD +32deg 3229
      116.	F5	11.0	 -	  -	
      117.	A3	 8.56	0.14	 0.10	BD +32deg 3221
     *118.	A3	 5.22	0.11	 0.03	BD +32deg 3228
      119.	F5	11.10	0.56	-0.13	
      120.	A9	11.62	0.24	-0.09	
      121.	F5	10.64	0.40	 0.01	
      122.	F4	11.50	0.47	-0.19	
      123.	F3	10.14	0.34	 0.09	BD +32deg 3235
      124.	F5	12.14	0.42	-0.14	
      125.	F4	11.96	0.50	-0.19	

      126.	F2	12.75	0.59	-0.07	
      127.	A2	 9.70  -0.01	 0.19	BD +32deg 3242
      128.	F6	12.41	0.57	-0.18	
      129.	F5	12.29	0.57	-0.30	
      130.	F5	11.31	0.34	-0.02	
      131.	A4	12.34	0.29	-0.06	
      132.	F3	12.39	0.85	-0.10	
      133.	F4	12.46	0.58	-0.21	
      134.	F4	11.20	0.36	 0.04	
      135.	A0	 8.83	0.03	 0.26	BD +33deg 3245
      136.	F4	12.21	0.61	-0.18	
      137.	F5	12.54	0.73	-0.23	
      138.	F3	10.94	0.26	 0.11	
      139.	F5	11.02	0.37	-0.03	
      140.	F3	12.83	0.64	  -	
      141.	F5	12.44	0.54	-0.21	
      142.	A5	11.87	0.25	 0.01	
      143.	A5	10.50	0.11	 0.18	
      144.	F5	11.15	0.54	-0.04	
      145.	A3	12.83	0.61	  -	
      146.	A	12.92	0.76	  -	
      147.	F2	11.01	0.48	 0.13	BD +33deg 3239
      148.	F2	10.39	0.36	 0.08	BD +33deg 3238
      149.	F4	12.46	0.57	-0.24	
      150.	A4	12.07	0.37	-0.07
	
      151.	F2	11.8	 -	  -	blend
      152.	B8	 8.65	0.08	 0.04	BD +33deg 3241
      153.	F6	12.38	0.62	-0.18	
      154.	A8	12.24	0.41	 0.05	
      155.	F1	10.74	0.35	 0.14	BD +33deg 3244
      156.	F6	10.99	0.42	 0.03	
      157.	A6	12.72	0.51	-0.21	
      158.	A1	11.63	0.03	-0.10	
      159.	F3	 9.89	0.54	 0.10	BD +32deg 3234
      160.	F1	10.17	0.29	 0.14	BD +32deg 3232
      161.	A4	 9.75	0.14	 0.33	BD +33deg 3232
      162.	F2	 9.09	0.51	-0.01	BD +33deg 3236
      163.	A8	12.17	0.57	-0.16	
      164.	A6	11.69	0.30	 0.03	
      165.	F3	12.43	0.58	-0.19	
      166.	F0	12.15	0.51	-0.09	
      167.	F6	10.8	 -	  -	BD +33deg 3228, blend
      168.	F4	11.03	0.47	 0.07	
      169.	F3	10.1	 -	  -	blend
      170.	B2	 7.0	 -	  -	blend
      171.	A1				BD +33deg 3223, beta Lyrae
      172.	A7	 9.79	0.23	 0.43	
      173.	A9	10.97	0.65	 0.08	
      174.	F6	11.44	0.56	-0.02	
      175.	F1	11.58	0.59	 0.00	

      176.	A2	11.38	0.31	 0.19	
     *177.	B2	 5.89  -0.16	-0.65	BD +32deg 3227
      178.	F6	 8.66	0.56	 0.10	BD +32deg 3223
      179.	A8	10.86	0.29	 0.23	
      180.	F5	11.98	0.59	-0.19	
      181.	F3	11.01	0.51	-0.03	
      182.	F6	10.67	0.41	 0.37	
      183.	F6	11.77	0.59	-0.16	
      184.	F5	11.11	0.46	 0.09	
      185.	F3	11.92	0.43	 0.07	
      186.	F5	11.16	0.50	-0.01	
      187.	F0	11.42	0.64	 0.06	
      188.	F0	12.50	0.61	  -	
      189.	F2	10.24	0.44	 0.06	
      190.	A2	 6.84	0.37	 0.09	BD +33deg 3215
      191.	F7	10.61	0.52	 0.14	BD +33deg 3219
      192.	F0	10.44	0.35	 0.18	
      193.	F0	11.6	 -	  -	blend
      194.	F5	 9.9	 -	  -	BD +33deg 3204, blend
      195.	F3	11.08	0.45	 0.01	
      196.	A5	 9.00	0.19	 0.25	BD +32deg 3214
      197.	F4	10.93	0.45	 0.05	
      198.	F2	10.12	0.43	 0.00	
      199.	F4	12.19	0.64	-0.28	
      200.	F2.	10.80	0.37	 0.03	

      201.	F0	11.48	0.48	-0.03	
      202.	F6	11.92	0.58	-0.19	
      203.	F6	11.41	0.55	-0.19	
      204.	F6	10.28	0.51	 0.04	BD +32deg 3208
      205.	A5	11.98	0.13	 0.16	
      206.	F5	10.01	0.40	 0.09	BD +32deg 3207
      207.	F2	 9.89	0.38	 0.18	BD +32deg 3200
      208.	F5	12.06	0.65	-0.28	
      209.	F5	11.67	0.59	-0.15	
      210.	A4	 9.77	0.19	 0.15	BD +32deg 3195
      211.	F3	11.54	0.52	-0.19	
      212.	F2	10.13	0.40	 0.00	
      213.	F6	10.43	0.56	-0.03	BD +32deg 3194
      214.	F0	12.27	0.42	-0.04	
      215.	F5	10.54	0.58	 0.00	
      216.	F2	11.62	0.50	-0.10	
      217.	F1	11.18	0.16	 0.02	
      218.	F2	10.68	0.43	 0.02	
      219.	A1	 9.76	0.13	 0.16	BD +32deg 3193
      220.	A7	11.23	0.44	 0.19	
      221.	A3	11.76	0.27	 0.13	
      222.	F5	10.97	0.58	 0.03	
      223.	F1	10.77	0.66	 0.15	
      224.	F5	10.90	0.49	-0.02	
      225.	F6	12.25	0.61	-0.19	

      226.	A6	10.21	0.13	 0.19	BD +33deg 3193
      227.	F0	11.01	0.27	 0.09	BD +33deg 3196
      228.	A4	 9.57	0.19	 0.17	BD +33deg 3200
      229.	F6	11.87	0.75	-0.22	
      230.	F6	 9.35	0.47	-0.06	BD +33deg 3194
      231.	F5	11.03	0.40	 0.15	
      232.	B9	11.62	0.07	 0.07	
      233.	F5	11.92	0.17	 0.02	
      234.	A3	12.70	0.30	-0.16	
      235.	A5	 8.99	0.21	 0.20	BD +33deg 3188
      236.	F4	11.08	0.38	 0.09	
      237.	F0	11.48	0.40	-0.03	
      238.	F3	12.49	0.61	-0.28	
      239.	F4	 9.71	0.48	 0.19	BD +33deg 3187
      240.	A3	11.5	 -	  -	
      241.	F0	11.33	0.27	 0.17	
      242.	F5	11.14	0.58	-0.26	
      243.	F5	11.04	0.51	-0.17	
      244.	F6	10.29	0.47	 0.14	
      245.	F5	11.97	0.45	-0.26	
      246.	F7	 7.56	0.83	 0.14	BD +33deg 3190
      247.	F5	11.3	 -	  -	
      248.	A9	12.23	0.61	-0.08	
      249.	F5	10.15	0.69	 0.16	BD +33deg 3185
      250.	F5	11.57	0.58	 0.05	

      251.	F5	11.63	0.61	 0.11	BD +33deg 3186
      252.	F4	11.44	0.70	-0.06	
      253.	A0	12.50	0.32	-0.23	
      254.	F6	11.13	0.70	 0.06	
      255.	F6	10.69	0.73	 0.08	
      256.	F6	11.42	0.91	-0.05	
      257.	A7	10.33	1.56	 1.28	
      258.	A0	 9.45	0.10	 0.20	BD +33deg 3195
      259.	F6	11.90	0.68	-0.18	
      260.	A1	12.43	0.40	-0.02	
      261.	F6	 9.59	0.55	 0.18	BD +34deg 3313
      262.	F6	 9.52	0.61	 0.13	BD +34deg 3314
      263.	F1	10.34	0.36	 0.10	
      264.	F7	 8.17	0.57	 0.06	BD +34deg 3317
      265.	F0	12.25	0.53	-0.21	
      266.	F5	12.19	0.53	-0.24	
      267.	F0	10.35	0.30	 0.19	BD +33deg 3210
      268.	F4	11.52	0.40	 0.08	
      269.	B5	11.25  -0.04	-0.38	
      270.	F6	 8.78	0.54	 0.10	BD +33deg 3212
      271.	F1	11.85	0.45	 0.05	
      272.	A8	12.36	0.41	-0.11	
      273.	F5	10.78	0.65	 0.09	
      274.	A4	 8.81	0.29	 0.21	BD +34deg 3325
      275.	F5	12.46	0.58	-0.17	

      276.	A0	 7.82	0.25	 0.26	BD +34deg 3729
      277.	F4	11.89	0.36	 0.07	
      278.	F7	 8.35	0.58	 0.20	BD +33deg 3214
      279.	F5	10.18	0.44	 0.14	BD +33deg 3221
      280.	F6	11.59	0.55	  -	
      281.	F3	11.19	0.44    -0.06	
      282.	F6	10.00	0.44	 0.17	BD +33deg 3231
      283.	A4	10.10	0.13	 0.24	BD +33deg 3233
      284.	A3	 9.55	0.36	 0.30	BD +34deg 3333
      285.	F2	10.89	0.33	 0.09	BD +34deg 3338
      286.	F5	12.09	0.51	-0.11	
      287.	F4	11.58	0.42	-0.06	
      288.	F5	12.60	0.59	-0.19	
      289.	F3	12.0	 -	  -	
      290.	F5	11.60	0.49	 0.04	
      291.	F3	11.12	0.23	 0.13	
      292.	F6	11.76	0.76	-0.02	
      293.	F5	12.52	0.68	-0.30	
      294.	A3	11.53	0.29	 0.12	
      295.	F6	11.16	0.61	-0.15	
      296.	F4	12.27	0.70	-0.36	
      297.	F2	10.49	0.21	 0.76	BD +34deg 3340
      298.	A4	13.09	0.41	-0.31	
      299.	A0	12.02	0.00	-0.16	
      300.	A7	10.51	0.34	 0.23	

      301.	A3	 6.94	0.32	 0.37	BD +34deg 3334
      302.	A3	 8.54	0.74	 0.18	BD +34deg 3337
      303.	F5	11.78	0.57	-0.20	
      304.	F2	 9.62	0.41	 0.13	BD +34deg 3339
      305.	A2	11.83	0.41	 0.17	
      306.	F4	10.91	0.59	-0.04	
      307.	F4	11.84	0.61	-0.17	
      308.	F2	10.96	0.52	 0.01	
      309.	A4	12.00	0.47	-0.03	
      310.	F7	 7.40	0.79	 0.20	BD +34deg 3326
      311.	B9	 8.15	0.25	-0.01	BD +34deg 3319
      312.	F4	11.44	0.66	-0.06	
      313.	F0	11.10	0.43	 0.11	
      314.	F5	10.38	0.65	 0.08	
      315.	A0	11.68	0.27	-0.11	
      316.	F5	11.66	0.65	-0.03	
      317.	F5	11.40	0.67	-0.20	
      318.	F2	 9.70	0.47	 0.24	BD +34deg 3321
      319.	F6	11.94	0.80	-0.26	
      320.	A1	11.14	0.39	 0.10	
      321.	A2	 6.64	0.40	 0.18	BD +34deg 3310
      322.	F5	10.53	0.67	 0.02	BD +34deg 3309
      323.	A0	13.43	0.31	  -	
      324.	A8	 9.19	0.49	 0.16	BD +34deg 3303
      325.	F6	11.21	0.65	 0.03	

      326.	F5	11.71	0.79	-0.19	
      327.	F3	 9.44	0.58	 0.00	BD +34deg 3299
      328.	A3	 7.51	0.44	 0.19	BD +34deg 3297
      329.	F6	10.47	0.64	 0.08	BD +34deg 3300
      330.	A8	 8.98	0.49	 0.15	BD +34deg 3301
      331.	B3	12.58	0.60	-0.20	
      332.	F5	10.98	0.80	-0.01	
      333.	F7	11.29	0.76	-0.08	
      334.	A2	 8.7	 -	  -	BD +34deg 3312, blend
      335.	F0	10.51	0.61	 0.18	
      336.	A3	 9.70	0.31	 0.18	BD +34deg 3305
      337.	B7	 6.86	0.40	-0.18	BD +34deg 3302
      338.	F5	11.21	0.75	-0.06	
      339.	F0	11.58	0.50	-0.03	
      340.	F0	11.97	0.73	-0.16	
      341.	F3	11.58	0.74	-0.16	
      342.	F5	11.29	0.77	-0.10	
      343.	F4	10.42	0.63	 0.07	
      344.	A9	11.11	0.62	  -	
      345.	F6	10.14	0.76	 0.11	BD +35deg 3359
      346.	F2	 9.45	0.51	 0.13	BD +35deg 3353
      347.	F1	11.31	0.72	-0.07	
      348.	B9	 9.13	0.42	 0.11	BD +35deg 3349
      349.	A7	 8.76	0.36	 0.22	BD +35deg 3346
      350.	A2	12.17	0.36	-0.09	

      351.	F1	 8.5	 -	  -	BD +35deg 3342, blend
      352.	F4	11.80	0.74	-0.21	
      353.	F1	11.31	0.61	 0.00					
      354.	F5	11.40	0.89	-0.26	
      355.	B8	 9.09	0.31	 0.00	BD +35deg 3341
      356.	F4	 9.54	0.68	 0.02	BD +34deg 3295
      357.	A7	 9.92	0.64	 0.14	BD +34deg 3294
      358.	A9	12.16	0.54	-0.08	
      359.	A5	10.04	0.44	 0.16	BD +34deg 3292
      360.	F6	10.27	0.76	 0.22	BD +34deg 3291
      361.	A9	 9.51	0.40	 0.23	BD +34deg 3290
      362.	F2	11.89	0.54	 0.11	
      363.	A0	 7.8	 -	  -	blend
      364.	B3	 6.2	 -	  -	BD +34deg 3285, blend
      365.	F6	10.70	0.69	 0.10			
      366.	A0	 9.88	0.25	 0.28	BD +35deg 3284	
      367.	A0	 9.77	0.24	 0.15	BD +34deg 3281	
      368.	F5	10.41	0.67	 0.10	BD +34deg 3277	
      369.	F5	11.61	0.70	-0.15				
      370.	F6	10.36	0.78	 0.19	BD +34deg 3278	
      371.	F3	 9.99	0.46	 0.02	BD +35deg 3331 	
      372.	A6	13.63	 -	  -		
      373.	F5	 9.84	0.69	 0.10	BD +35deg 3333	
      374.	A2	12.16	0.41	-0.10
      375.	F4	  -	 -	  -	on the edge of the
                                                plate
      376.	A2	 8.81	0.48	 0.16	BD +35deg 3324
      377.	F4	10.21	0.77	 0.11	BD +35deg 3313
      378.	A9	11.43	0.80	 0.23	
      379.	A5	12.33	0.59	 0.01	
      380.	F2	10.87	0.68	 0.01		
      381.	F5	10.45	0.87	 0.13	BD +34deg 3268	
      382.	A9	12.54	0.50	 0.09		
      383.	F5	12.19	0.75	  -		
      384.	F4	 9.19	0.73	 0.11	BD +34deg 3263	
      385.	F5	10.03	0.63	 0.15	BD +34deg 3261	
      386.	A7	10.35	0.56	 0.15		
      387.	A5	11.30	0.54	-0.12	BD +34deg 3272	
      388.	F0	11.3	 -	  -	blend	
      389.	F2	12.41	0.64	-0.23		
      390.	A4	12.44	0.46	 0.00		
      391.	F5	11.26	0.63	-0.03		
      392.	F6	10.03	0.72	 0.16	BD +34deg 3276	
      393.	F4	12.36	0.66	-0.03		
      394.	F5	10.94	0.62	 0.05		
      395.	A0	 8.83	0.24	-0.05	BD +34deg 3289	
      396.	F6	10.41	0.65	 0.29		
      397.	F5	11.74	0.58	 0.31		
      398.	F2	 9.86	0.59	 0.12	BD +34deg 3283	
      399.	F2	11.78	0.72	-0.16		
      400.	A9	11.40	0.54	 0.11		

      401.	B4	 7.20	0.11	-0.41	BD +33deg 3180
      402.	F6	 9.73	0.60	 0.20	BD +33deg 3172
      403.	A1	11.26	0.56	 0.25	
      404.	F5	11.66	0.60	 0.05	
      405.	F6	11.35	0.53	 0.03	
      406.	F5	10.49	0.63	 0.12	
      407.	A8	11.94	0.42	 0.11	
      408.	F5	10.86	0.56	 0.12	BD +34deg 3260
      409.	F5	10.97	0.55	 0.05	
      410.	F5	11.43	0.69	-0.01	
      411.	B9	10.60	0.10	-0.07	BD +34deg 3252
      412.	F5	11.16	0.62	 0.11	
      413.	F4	12.35	0.69	-0.19	
      414.	F1	11.52	0.52	-0.02	
      415.	F2	11.21	0.50	 0.19	
      416.	A0	 5.80  -0.09	 0.24	BD +34deg 3245
      417.	A3	10.42	0.31	 0.26	BD +34deg 3250
      418.	F0	12.37	0.65	-0.02	
      419.	A2	11.32	0.29	 0.22	
      420.	F5	10.59	0.75	-0.02	
      421.	F1	11.56	0.52	 0.06	
      422.	A0	 8.61	0.28	 0.13	BD +34deg 3247
      423.	F5	10.04	0.68	 0.18	BD +34deg 3249
      424.	A1	12.63	0.11	-0.46	
      425.	A5	 9.34	0.34	 0.24	BD +33deg 3138

      426.	A7	11.27	0.49	-0.01	
      427.	F4	11.71	0.79	-0.19	
      428.	F3	11.73	0.43	 0.06	
      429.	F3	10.20	0.35	 0.21	
      430.	A3	10.68	0.28	 0.12	
      431.	F5	10.92	0.64	-0.10	BD +33deg 3144
      432.	F5	10.23	0.88	-0.06	BD +33deg 3149
      433.	F5	11.20	0.70	-0.14	
     *434.	A1	 5.38  -0.10	-0.49	BD +33deg 3212
      435.	F0	12.15	0.70	-0.20	
      436.	A3	 9.70	0.36	-0.01	BD +33deg 3152
      437.	F4	11.91	0.63	-0.26	
      438.	F5	11.85	0.67	-0.07	
      439.	F5	10.73	0.59	 0.00	
      440.	F0	10.94	0.47	-0.03	
      441.	F0	11.55	0.46	-0.01	
      442.	A8	11.94	0.58	-0.13	
      443.	F5	10.52	0.81	-0.12	
      444.	A7	 9.32	0.30	 0.11	BD +32deg 3155
      445.	A0	11.17	0.15	-0.12	
      446.	F1	11.14	0.63	 0.02	
      447.	A5	12.41	0.78	-0.36	
      448.	A6	12.25	0.51	-0.11	
      449.	F6	10.69	0.69	 0.03	
      450.	F4	10.57	0.67	-0.10	
					
      451.	F7	 9.30	0.76	-0.01	BD +32deg 3169
      452.	F5	11.62	1.00	-0.27	
      453.	F6	11.04	0.91	-0.20	
      454.	F6	11.16	0.81	-0.28	
      455.	A0	12.96	0.50	  -	
      456.	F5	11.80	0.66	-0.27	
      457.	A5	11.54	0.58	-0.01	
      458.	F6	11.54	0.60	-0.07	
      459.	F5	10.15	0.70	-0.11	BD +32deg 3166
      460.	F4	11.20	0.78	-0.20	
      461.	F7	11.52	0.81	-0.19	
      462.	F6	10.39	0.81	-0.17	BD +33deg 3169
      463.	F5	11.78	0.68	-0.22	
      464.	F3	11.57	0.68	-0.20	
      465.	F5	10.56	0.70	-0.11	
      466.	F6	10.67	0.69	-0.10	
      467.	F6	 6.90	0.83	 0.08	BD +33deg 3171
      468.	F0	11.47	0.64	-0.09	
      469.	F3	 9.84	0.64	 0.07	BD +33deg 3167
      470.	B8	 8.51	0.40	-0.10	BD +33deg 3165
      471.	F3	 9.06	0.62	 0.08	BD +33deg 3163
      472.	F5	10.50	0.77	-0.17	
      473.	F5	10.77	0.75	-0.03	
      474.	F6	 9.94	0.84	 0.01	BD +33deg 3159
      475.	B9	 9.24	0.34	 0.01	BD +33deg 3173

      476.	F7	 9.55	0.74	-0.05	BD +33deg 3174
      477.	F5	 9.53	0.86	 0.01	BD +33deg 3179
      478.	A2	10.99	0.44	 0.12	
      479.	A9	11.46	0.73	-0.14	
      480.	F5	11.06	0.76	-0.14	
      481.	A0	10.38	0.30	-0.01	BD +33deg 3178
      482.	F7	 9.51	0.90	 0.30	BD +33deg 3181
      483.	F6	10.92	0.75	-0.09	
      484.	F5	11.86	0.67	-0.11	
      485.	F2	12.13	0.65	-0.11	
      486.	F0	10.93	0.59	-0.07	
      487.	F0	12.64	0.62	-0.27	
      488.	A4	 9.32	0.67	 0.03	BD +32deg 3183
      489.	F5	11.49	0.77	-0.21	
      490.	F5	11.45	0.87	-0.29	
      491.	F4	11.13	0.70	-0.32	BD +32deg 3170
      492.	F4	11.67	0.78	-0.23	
      493.	F7	 9.4	 -	  -	BD +32deg 3175, blend
      494.	F4	10.68	0.56	-0.11	
      495.	F5	11.61	0.64	-0.19	
      496.	F6	10.98	0.79	 0.05	
      497.	B8	10.03  -0.02	-0.39	BD +32deg 3165
      498.	A8	 9.45	0.34	 0.02	BD +32deg 3162
      499.	A9	 9.35	0.43	 0.01	BD +32deg 3161
      500.	A3	 9.77	0.27	 0.00	BD +32deg 3159
					
      501.	F4	12.02	0.52	-0.31	
      502.	A2	12.08	0.29	-0.06	
      503.	F6	 9.96	0.77	-0.11	
      504.	F3	 9.62	0.46	-0.11	BD +32deg 3157
      505.	F5	11.35	0.58	-0.17	
      506.	F4	11.89	0.49	-0.18	
      507.	F6	10.29	0.58	-0.14	BD +32deg 3154
      508.	F2	11.14	0.30	-0.12	
      509.	F3	11.12	0.16	-0.03	
      510.	F6	10.51	0.55	-0.06	BD +31deg 3301
      511.	F6	 9.37	0.54	-0.05	BD +31deg 3305
      512.	A8	12.37	0.51	-0.11	
      513.	A1	 9.51	0.01	-0.08	BD +32deg 3164
      514.	F6	10.81	0.55	 0.03	
      515.	A4	12.62	0.30	-0.18	
      516.	A8	12.32	0.53	-0.20	
      517.	A8	12.47	0.48	-0.07	
      518.	F5	10.49	0.54	-0.10	
      519.	A6	12.03	0.72	-0.27	
      520.	F5	10.38	0.47	-0.07	BD +31deg 3310
      521.	F3	10.65	0.38	-0.03	BD +31deg 3312
      522.	A5	 8.94	0.32	 0.07	BD +31deg 3311
      523.	A3	13.03	0.54	-0.13	
      524.	F6	10.10	0.45	-0.03	



Notes to the table:

  An asterisk at the left upper side of the running number denotes 
photoelectrically measured colours.
  Blend is remarked if the photographic image of the measured star is 
distorted by a neighbouring star.